Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius RR is 2R3\frac{2R}{\sqrt{3}}. Also find the maximum volume.

Answer

The correct answer is 2R3.\frac{2R}{\sqrt3}.
A sphere of fixed radius (R)(R) is given. Let rr and hh be the radius and the height of the cylinder respectively.
Cylinder
From the given figure, we have h=2R2r2.h=2\sqrt{R^2-r^2}.
The volume (V)(V) of the cylinder is given by,
V=πr2h=2πr2R2r2V=πr^2h=2πr^2\sqrt{R^2-r^2}
dVdr=4πrR2r2+2πr2(2r)2R2r2∴\frac{dV}{dr}=4πr\sqrt{R^2-r^2}+\frac{2πr^2(-2r)}{2\sqrt{R^2-r^2}}
=4πr(R2r2)2πr3R2r2=\frac{4πr(R^2-r^2)-2πr^3}{\sqrt{R^2-r^2}}
=4πrR26πr3R2r2=\frac{4πrR^2-6πr^3}{\sqrt{R^2-r^2}}
Now,dVdr=0\frac{dV}{dr}=0
4πrR26πr3=0⇒4πrR^2-6πr^3=0
r2=2R23⇒r^2=\frac{2R^2}{3}
Now d2Vdr2=R2r2(4πR218πr2)(4πR26πr3)(2r)2R2r2(r2R2)\frac{\frac{d^2V}{dr^2}=\sqrt{R^2-r^2}(4πR^2-18πr^2)-(4πR^2-6πr^3)-\frac{(-2r)}{2\sqrt{R^2-r^2}}}{(r^2-R^2)}
=4πR422πr2R2+12πr4+4πr2R2(R2r2)32=\frac{4πR^4-22πr^2R^2+12πr^4+4πr^2R^2}{(R^2-r^2)^\frac{3}{2}}
Now, it can be observed that at r2=2R23,d2Vdr2<0r^2=\frac{2R^2}{3},\frac{d^2V}{dr^2}<0
∴The volume is the maximum when r2=2R23r^2=\frac{2R^2}{3}
When r2=2R23r^2=\frac{2R^2}{3} , the height of the cylinder is 2R22R232\sqrt{R^2-\frac{2R^2}{3}}
=2R23=2R3.=2\sqrt{\frac{R^2}{3}}=\frac{2R}{\sqrt3}.
Hence, the volume of the cylinder is the maximum when the height of the cylinder is 2R3.\frac{2R}{\sqrt3}.