Solveeit Logo

Question

Question: Show that the half-life period of a first-order reaction is independent of the initial concentration...

Show that the half-life period of a first-order reaction is independent of the initial concentration of the reactant.

Explanation

Solution

The half-life period of a reaction is defined as that period in which the concentration of reactant is reduced to half of its initial concentration. It is denoted as t1/2{t_{1/2}}.

Complete answer: Let’s discuss the derivation for the half-life period of the first-order reaction:
Let us consider a general reaction for first order:
AProductA \to {\text{Product}}
Suppose [Ao][{A_o}] is the initial concentration
[A][A] is the final concentration.
The rate of reaction is given as:
=d[A]dt= - \dfrac{{d[A]}}{{dt}} (1)
According to rate law:
Rate of reaction=k[A]1Rate{\text{ }}of{\text{ }}reaction = k{[A]^1} (2)
Where k is rate constant
Comparing the above two equation we get:
d[A]dt=k[A]- \dfrac{{d[A]}}{{dt}} = k[A]
d[A][A]=k×dt\Rightarrow - \dfrac{{d[A]}}{{[A]}} = k \times dt (3)
Taking integration on both sides the equation (3) will be
d[A]dt=\int { - \frac{{d[A]}}{{dt}}} = d[A][A]=kdt\int { - \frac{{d[A]}}{{[A]}}} = \int {kdt} (4)
As we know,
d[A][A]    =    ln[A]\int { - \frac{{d[A]}}{{[A]}}} {\text{ }}\;{\text{ }} = {\text{ }}\;{\text{ }} - \ln [A]
And dt=t\int {dt} = t
On solving equation (4) will be
ln[A]=kt+C- \ln [A] = kt + C (5)
Where C is integration constant.
Now we will find the value of C
When t=0t = 0, [A][A]=[Ao][{A_o}]
Put above value in equation (5) we get,
    ln[Ao]=k×0+C    ln[Ao]=C    {\text{ }}\;{\text{ }} - \ln [{A_o}] = k \times 0 + C \Rightarrow {\text{ }}\;{\text{ }} - \ln [{A_o}] = C{\text{ }}\;{\text{ }} Now put the value of C in equation (5)

{\text{ }}\;{\text{ }}\;{\text{ }} - \ln [A] = kt - \ln [{A_o}]{\text{ }}\;{\text{ }} \Rightarrow - \ln [A] + \ln [{A_o}] = kt{\text{ }}\;{\text{ }} \\\ \;{\text{ since }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\ln A - \ln B = \frac{{\ln A}}{{\ln B}}{\text{ }}\;{\text{ }} \\\ {\text{Hence }}\;{\text{ }}\;{\text{ }}\frac{{\ln [{A_o}]}}{{\ln [A]}} = kt{\text{ }}\;{\text{ }} \Rightarrow \frac{1}{k} \times \frac{{\ln [{A_o}]}}{{\ln [A]}} = t{\text{ }}\;{\text{ }} \\\ $$ Hence, during the half-life period $[A]$=$[\frac{{{A_o}}}{2}]$ and $$$$ Putting value in the above equation we get $${\text{ }}\;{\text{ }}\;{\text{ }}{t_{1/2}} = \frac{1}{k} \times \frac{{\ln [{A_o}]}}{{\ln [\frac{{{A_0}}}{2}]}}{\text{ }}\;{\text{ }} \Rightarrow {t_{1/2}} = \frac{1}{k} \times \frac{{\ln [{A_o}] \times 2}}{{\ln [{A_o}]}}{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }} \Rightarrow {t_{1/2}} = \frac{1}{k} \times \ln 2$$ Since we can’t calculate the ln, so it is changed to log by multiplying 2.303 Log2=0.3010 Hence ${\text{ }}\;{\text{ }}\;{\text{ }}{t_{1/2}} = \frac{1}{k} \times 2.303 \times 0.3010{\text{ }}\;{\text{ }}\;{\text{ }} \Rightarrow {t_{1/2}} = \frac{{0.693}}{k}$ Hence proved. **Note:** In general, for a reaction of ${n^{th}}$ order, $${\text{ }}\;{\text{ }}\;{\text{ }}{t_{1/2}} \propto {[A]^{1 - n}}{\text{ }}or{\text{ }}\;{\text{ }}\;{\text{ }}{t_{1/2}} \propto \frac{1}{{{{[A]}^{1 - n}}}}$$