Solveeit Logo

Question

Question: Show that the given expression \({{\sin }^{-1}}\left( \dfrac{12}{13} \right)+{{\cos }^{-1}}\left( \d...

Show that the given expression sin1(1213)+cos1(45)+tan1(6316)=π{{\sin }^{-1}}\left( \dfrac{12}{13} \right)+{{\cos }^{-1}}\left( \dfrac{4}{5} \right)+{{\tan }^{-1}}\left( \dfrac{63}{16} \right)=\pi

Explanation

Solution

Hint: We will use the formulas for trigonometric ratios which is given by cos(θ)=BaseHypotenuse\cos \left( \theta \right)=\dfrac{\text{Base}}{\text{Hypotenuse}} and sin(a)=PerpendicularHypotenuse\sin \left( a \right)=\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}. This will help us to solve the question. And with the help of Pythagoras theorem we will find the angles.

Complete step-by-step answer:

We will consider the expression sin1(1213)+cos1(45)+tan1(6316)=π{{\sin }^{-1}}\left( \dfrac{12}{13} \right)+{{\cos }^{-1}}\left( \dfrac{4}{5} \right)+{{\tan }^{-1}}\left( \dfrac{63}{16} \right)=\pi . First we will substitute sin1(1213)=a{{\sin }^{-1}}\left( \dfrac{12}{13} \right)=a. By taking the inverse sine function to the right side of the expression we will have (1213)=sin(a)\left( \dfrac{12}{13} \right)=\sin \left( a \right). Now as we know that sin(a)=PerpendicularHypotenuse\sin \left( a \right)=\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}. Thus we have perpendicular as 12 units and hypotenuse is 13 units. By using Pythagoras theorem here we will find the value of the base. Therefore, we have the following diagram.

Thus by using Pythagoras theorem we have

(13)2=(12)2+x2{{\left( 13 \right)}^{2}}={{\left( 12 \right)}^{2}}+{{x}^{2}}

(13)2(12)2=x2\Rightarrow {{\left( 13 \right)}^{2}}-{{\left( 12 \right)}^{2}}={{x}^{2}}

169144=x2\Rightarrow 169-144={{x}^{2}}

x2=25\Rightarrow {{x}^{2}}=25

x=±5\Rightarrow x=\pm 5

As no side can be a negative side therefore we choose x = 5 units here. Now this will work as a base of the triangle. Therefore by applying the formula cos(θ)=BaseHypotenuse\cos \left( \theta \right)=\dfrac{\text{Base}}{\text{Hypotenuse}} we have cos(a)=513\cos \left( a \right)=\dfrac{5}{13}.

As we know that tan(a)=sin(a)cos(a)\tan \left( a \right)=\dfrac{\sin \left( a \right)}{\cos \left( a \right)}. Therefore we have

tan(a)=1213513\tan \left( a \right)=\dfrac{\dfrac{12}{13}}{\dfrac{5}{13}}

tan(a)=125\Rightarrow \tan \left( a \right)=\dfrac{12}{5}

Also, a=tan1(125)a={{\tan }^{-1}}\left( \dfrac{12}{5} \right)

Now we will consider cos1(45)=b{{\cos }^{-1}}\left( \dfrac{4}{5} \right)=b. By taking the inverse cosine term to the right side of the equal sign we will have (45)=cos(b)\left( \dfrac{4}{5} \right)=\cos \left( b \right). Now as we know that cos(θ)=BaseHypotenuse\cos \left( \theta \right)=\dfrac{\text{Base}}{\text{Hypotenuse}}. Thus we have base as 4 units and hypotenuse as 5 units. By using Pythagoras theorem here we will find the value of the perpendicular. Therefore, we have the following diagram.

Thus by using Pythagoras theorem we have

(5)2=y2+(4)2{{\left( 5 \right)}^{2}}={{y}^{2}}+{{\left( 4 \right)}^{2}}

y2=(5)2(4)2\Rightarrow {{y}^{2}}={{\left( 5 \right)}^{2}}-{{\left( 4 \right)}^{2}}

y2=2516\Rightarrow {{y}^{2}}=25-16

y2=9\Rightarrow {{y}^{2}}=9

y=±3\Rightarrow y=\pm 3

As we know that the side cannot be negative. Therefore, we have that y = 3 which is the perpendicular in the triangle. Now will find the value of sin(b)=PerpendicularHypotenuse\sin \left( b \right)=\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}. Thus after substituting the values we have sin(b)=35\sin \left( b \right)=\dfrac{3}{5}. As we know that tan(b)=sin(b)cos(b)\tan \left( b \right)=\dfrac{\sin \left( b \right)}{\cos \left( b \right)}. Therefore we have

tan(b)=3545\tan \left( b \right)=\dfrac{\dfrac{3}{5}}{\dfrac{4}{5}}

tan(b)=34\Rightarrow \tan \left( b \right)=\dfrac{3}{4}

Also, b=tan1(34)b={{\tan }^{-1}}\left( \dfrac{3}{4} \right).

Now, we will apply the formula given by tan(a+b)=tan(a)+tan(b)1tan(a)tan(b)\tan \left( a+b \right)=\dfrac{\tan \left( a \right)+\tan \left( b \right)}{1-\tan \left( a \right)\tan \left( b \right)}. After substituting the values we have

tan(a+b)=125+341(125)34\tan \left( a+b \right)=\dfrac{\dfrac{12}{5}+\dfrac{3}{4}}{1-\left( \dfrac{12}{5} \right)\dfrac{3}{4}}

tan(a+b)=48+1520203620\Rightarrow \tan \left( a+b \right)=\dfrac{\dfrac{48+15}{20}}{\dfrac{20-36}{20}}

tan(a+b)=63201620\Rightarrow \tan \left( a+b \right)=\dfrac{\dfrac{63}{20}}{\dfrac{-16}{20}}

tan(a+b)=6316\Rightarrow \tan \left( a+b \right)=-\dfrac{63}{16}

By taking the inverse term tan to the right side of the equation we can have (a+b)=tan1(6316)\left( a+b \right)={{\tan }^{-1}}\left( -\dfrac{63}{16} \right).

As we know that the value of a and b in terms of tan are a=tan1(125)a={{\tan }^{-1}}\left( \dfrac{12}{5} \right) and b=tan1(34)b={{\tan }^{-1}}\left( \dfrac{3}{4} \right). Thus we can have tan1(125)+tan1(34)=tan1(6316){{\tan }^{-1}}\left( \dfrac{12}{5} \right)+{{\tan }^{-1}}\left( \dfrac{3}{4} \right)={{\tan }^{-1}}\left( -\dfrac{63}{16} \right). Now we will use the formula tan1(x)=πtan1(x){{\tan }^{-1}}\left( -x \right)=\pi -{{\tan }^{-1}}\left( x \right). Thus we have

tan1(125)+tan1(34)=tan1(6316){{\tan }^{-1}}\left( \dfrac{12}{5} \right)+{{\tan }^{-1}}\left( \dfrac{3}{4} \right)={{\tan }^{-1}}\left( -\dfrac{63}{16} \right)

tan1(125)+tan1(34)=πtan1(6316)\Rightarrow {{\tan }^{-1}}\left( \dfrac{12}{5} \right)+{{\tan }^{-1}}\left( \dfrac{3}{4} \right)=\pi -{{\tan }^{-1}}\left( \dfrac{63}{16} \right)

tan1(125)+tan1(34)+tan1(6316)=π\Rightarrow {{\tan }^{-1}}\left( \dfrac{12}{5} \right)+{{\tan }^{-1}}\left( \dfrac{3}{4} \right)+{{\tan }^{-1}}\left( \dfrac{63}{16} \right)=\pi

Hence, the expression sin1(1213)+cos1(45)+tan1(6316)=π{{\sin }^{-1}}\left( \dfrac{12}{13} \right)+{{\cos }^{-1}}\left( \dfrac{4}{5} \right)+{{\tan }^{-1}}\left( \dfrac{63}{16} \right)=\pi is proved.

Note: We could have solved it by an alternate method. In this method we can solve it as

sin1(1213)=a{{\sin }^{-1}}\left( \dfrac{12}{13} \right)=a

(1213)=sin(a)\Rightarrow \left( \dfrac{12}{13} \right)=\sin \left( a \right)

By using the trigonometry identity here which is given by cos2(a)+sin2(a)=1{{\cos }^{2}}\left( a \right)+{{\sin }^{2}}\left( a \right)=1. This results in cos2(a)=1sin2(a){{\cos }^{2}}\left( a \right)=1-{{\sin }^{2}}\left( a \right). Therefore we have

cos2(a)=1sin2(a){{\cos }^{2}}\left( a \right)=1-{{\sin }^{2}}\left( a \right)

cos2(a)=1(1213)2\Rightarrow {{\cos }^{2}}\left( a \right)=1-{{\left( \dfrac{12}{13} \right)}^{2}}

cos2(a)=1144169\Rightarrow {{\cos }^{2}}\left( a \right)=1-\dfrac{144}{169}

cos2(a)=169144169\Rightarrow {{\cos }^{2}}\left( a \right)=\dfrac{169-144}{169}

cos2(a)=25169\Rightarrow {{\cos }^{2}}\left( a \right)=\dfrac{25}{169}

cos(a)=±513\Rightarrow \cos \left( a \right)=\pm \dfrac{5}{13}

We will choose here the value of cos(a)=513\cos \left( a \right)=\dfrac{5}{13}.

Similarly, we can solve the remaining by this formula and get the desired proof.