Solveeit Logo

Question

Question: Show that the given equation is true. \(\left( a+\omega b+{{\omega }^{2}}c \right)\left( a+{{\omeg...

Show that the given equation is true.
(a+ωb+ω2c)(a+ω2b+ωc)=a2+b2+c2bccaab\left( a+\omega b+{{\omega }^{2}}c \right)\left( a+{{\omega }^{2}}b+\omega c \right)={{a}^{2}}+{{b}^{2}}+{{c}^{2}}-bc-ca-ab

Explanation

Solution

Hint:Firstly assume the LHS and simplify it by multiplying the brackets. After simplification arrange the similar terms to take out some common terms from them. Then use the properties ω3=1{{\omega }^{3}}=1 and ω+ω2=1\omega +{{\omega }^{2}}=-1 to get the right hand side.

Complete step-by-step answer:
To prove the given equation is true we will write it down first,
(a+ωb+ω2c)(a+ω2b+ωc)=a2+b2+c2bccaab\left( a+\omega b+{{\omega }^{2}}c \right)\left( a+{{\omega }^{2}}b+\omega c \right)={{a}^{2}}+{{b}^{2}}+{{c}^{2}}-bc-ca-ab
Now, we will first solve the left hand side of the equation and then therefore assume,
Left Hand Side (LHS) = (a+ωb+ω2c)(a+ω2b+ωc)\left( a+\omega b+{{\omega }^{2}}c \right)\left( a+{{\omega }^{2}}b+\omega c \right) …………………………………. (1)
Right Hand Side (RHS) = a2+b2+c2bccaab{{a}^{2}}+{{b}^{2}}+{{c}^{2}}-bc-ca-ab ……………………………………… (2)
Above equation can be simplified as,
Therefore, Left Hand Side (LHS) = a(a+ω2b+ωc)+ωb(a+ω2b+ωc)+ω2c(a+ω2b+ωc)a\left( a+{{\omega }^{2}}b+\omega c \right)+\omega b\left( a+{{\omega }^{2}}b+\omega c \right)+{{\omega }^{2}}c\left( a+{{\omega }^{2}}b+\omega c \right)
If we multiply inside the brackets in the above equation we will get,
Therefore, Left Hand Side (LHS) = (a2+ω2ab+ωac)+(ωab+ω3b2+ω2bc)+(ω2ac+ω4bc+ω3c2)\left( {{a}^{2}}+{{\omega }^{2}}ab+\omega ac \right)+\left( \omega ab+{{\omega }^{3}}{{b}^{2}}+{{\omega }^{2}}bc \right)+\left( {{\omega }^{2}}ac+{{\omega }^{4}}bc+{{\omega }^{3}}{{c}^{2}} \right)
If we open the brackets of the above equation we will get,
Therefore, Left Hand Side (LHS) = a2+ω2ab+ωac+ωab+ω3b2+ω2bc+ω2ac+ω4bc+ω3c2{{a}^{2}}+{{\omega }^{2}}ab+\omega ac+\omega ab+{{\omega }^{3}}{{b}^{2}}+{{\omega }^{2}}bc+{{\omega }^{2}}ac+{{\omega }^{4}}bc+{{\omega }^{3}}{{c}^{2}}
By rearranging the above equation we will get,
Therefore, Left Hand Side (LHS) = a2+ω3b2+ω3c2+ω2ab+ωab+ω2bc+ω4bc+ω2ac+ωac{{a}^{2}}+{{\omega }^{3}}{{b}^{2}}+{{\omega }^{3}}{{c}^{2}}+{{\omega }^{2}}ab+\omega ab+{{\omega }^{2}}bc+{{\omega }^{4}}bc+{{\omega }^{2}}ac+\omega ac
Therefore, Left Hand Side (LHS) = a2+ω3b2+ω3c2+ω2ab+ωab+ω2bc+ω3+1bc+ω2ac+ωac{{a}^{2}}+{{\omega }^{3}}{{b}^{2}}+{{\omega }^{3}}{{c}^{2}}+{{\omega }^{2}}ab+\omega ab+{{\omega }^{2}}bc+{{\omega }^{3+1}}bc+{{\omega }^{2}}ac+\omega ac
As we know that we can write am+n{{a}^{m+n}} as aman{{a}^{m}}{{a}^{n}} therefore in the above equation we can replace ω3+1{{\omega }^{3+1}} by ω3ω{{\omega }^{3}}\omega therefore we will get,
Therefore, Left Hand Side (LHS) = a2+ω3b2+ω3c2+ω2ab+ωab+ω2bc+ω3ωbc+ω2ac+ωac{{a}^{2}}+{{\omega }^{3}}{{b}^{2}}+{{\omega }^{3}}{{c}^{2}}+{{\omega }^{2}}ab+\omega ab+{{\omega }^{2}}bc+{{\omega }^{3}}\omega bc+{{\omega }^{2}}ac+\omega ac
As we know that in the given equation 1,ω,ω21,\omega ,{{\omega }^{2}} are the cube roots of unity and to proceed further in the solution we should know the property of cube roots of unity given below,
Property:
ω3=1{{\omega }^{3}}=1
If we use the above property in LHS we will get,
Therefore, Left Hand Side (LHS) = a2+1×b2+1×c2+ω2ab+ωab+ω2bc+1×ωbc+ω2ac+ωac{{a}^{2}}+1\times {{b}^{2}}+1\times {{c}^{2}}+{{\omega }^{2}}ab+\omega ab+{{\omega }^{2}}bc+1\times \omega bc+{{\omega }^{2}}ac+\omega ac
Further simplification in the above equation will give,
Therefore, Left Hand Side (LHS) = a2+b2+c2+ω2ab+ωab+ω2bc+ωbc+ω2ac+ωac{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{\omega }^{2}}ab+\omega ab+{{\omega }^{2}}bc+\omega bc+{{\omega }^{2}}ac+\omega ac
If we take ‘ab’ common from the above equation we will get,
Therefore, Left Hand Side (LHS) = a2+b2+c2+(ω2+ω)ab+ω2bc+ωbc+ω2ac+ωac{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+\left( {{\omega }^{2}}+\omega \right)ab+{{\omega }^{2}}bc+\omega bc+{{\omega }^{2}}ac+\omega ac
Similarly if we take ‘bc’ and ‘ac’ common from the above equation we will get,
Therefore, Left Hand Side (LHS) = a2+b2+c2+(ω2+ω)ab+(ω2+ω)bc+(ω2+ω)ac{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+\left( {{\omega }^{2}}+\omega \right)ab+\left( {{\omega }^{2}}+\omega \right)bc+\left( {{\omega }^{2}}+\omega \right)ac
Now before we proceed further in the solution we should know the another important property of the cube roots of unity which is given below,
Property:
1+ω+ω2=01+\omega +{{\omega }^{2}}=0
If we shift 1 on the right side of the equation we will get,
ω+ω2=1\omega +{{\omega }^{2}}=-1
If we use the above value in LHS we will get,
Therefore, Left Hand Side (LHS) = a2+b2+c2+(1)ab+(1)bc+(1)ac{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+\left( -1 \right)ab+\left( -1 \right)bc+\left( -1 \right)ac
Further simplification in the above equation will give,
Therefore, Left Hand Side (LHS) = a2+b2+c2bccaab{{a}^{2}}+{{b}^{2}}+{{c}^{2}}-bc-ca-ab
If we compare the above equation with equation (2) we will get,
Left Hand Side (LHS) = Right Hand Side (RHS)
Therefore,
(a+ωb+ω2c)(a+ω2b+ωc)=a2+b2+c2bccaab\left( a+\omega b+{{\omega }^{2}}c \right)\left( a+{{\omega }^{2}}b+\omega c \right)={{a}^{2}}+{{b}^{2}}+{{c}^{2}}-bc-ca-ab
Hence proved.
Therefore the given equation is true.

Note: Many students directly use the property 1+ω+ω2=01+\omega +{{\omega }^{2}}=0 in the given equation without simplifying it and therefore face many difficulties in doing calculations. Do remember to simplify the equation so that you can use the simple value -1 of the property without any ω\omega to minimize your calculations.