Question
Mathematics Question on Differential equations
Show that the given differential equation is homogeneous and solve:(1+eyx)dx+eyx(1−yx)dy=0
(1+eyx)dx+eyx(1−yx)dy=0
(1+eyx)dx=−eyx(1−yx)dy=0
⇒dydx=1+eyx−eyx(1−yx)...(1)
Let F(x,y)=1+eyx−eyx(1−yx)
∴F(λx,λy)=1+eλyλx−eλyλx(1−λyλx)=1+eyx−eyx(1−yx)=λ0.F(x,y)
Therefore,the given differential equation is a homogenous equation.
To solve it,we make the substitution as:
x=vy
⇒dyd(x)=dyd(vy)
⇒dydx=v+ydydv
Substituting the values of x and dydx in equation(1),we get:
v+ydydv=1+ev−ev(1−v)
⇒ydydv=1+ev−ev+vev−v
⇒ydydv=1+ev−ev+vev−v−vev
⇒ydydv=−[1+evv+ev]
⇒[v+ev1+ev]dv=y−dy
Integrating both sides,we get:
⇒log(v+ev)=−logy+logC=log(yC)
⇒[yx+eyx]=yC
⇒x+yeyx=C
This is the required solution of the given differential equation.