Solveeit Logo

Question

Mathematics Question on Differential equations

Show that the given differential equation is homogeneous and solve:(1+exy)dx+exy(1xy)dy=0(1+e^{\frac{x}{y}})dx+e^{\frac{x}{y}}(1-\frac{x}{y})dy=0

Answer

(1+exy)dx+exy(1xy)dy=0(1+e^{\frac{x}{y}})dx+e^{\frac{x}{y}}(1-\frac{x}{y})dy=0
(1+exy)dx=exy(1xy)dy=0(1+e^{\frac{x}{y}})dx=-e^{\frac{x}{y}}(1-\frac{x}{y})dy=0
dxdy=exy(1xy)1+exy...(1)⇒\frac{dx}{dy}=\frac{-e^{\frac{x}{y}}(1-\frac{x}{y})}{1+e^{\frac{x}{y}}}...(1)
Let F(x,y)=exy(1xy)1+exyF(x,y)=\frac{-e^{\frac{x}{y}}(1-\frac{x}{y})}{1+e^{\frac{x}{y}}}
F(λx,λy)=eλxλy(1λxλy)1+eλxλy=exy(1xy)1+exy=λ0.F(x,y)∴F(λx,λy)=\frac{-e^{\frac{λx}{λy}}(1-\frac{λx}{λy})}{1+e^{\frac{λx}{λy}}}=\frac{-e^{\frac{x}{y}}(1-\frac{x}{y})}{1+e^{\frac{x}{y}}}=λ0.F(x,y)
Therefore,the given differential equation is a homogenous equation.
To solve it,we make the substitution as:
x=vyx=vy
ddy(x)=ddy(vy)⇒\frac{d}{dy}(x)=\frac{d}{dy}(vy)
dxdy=v+ydvdy⇒\frac{dx}{dy}=v+y\frac{dv}{dy}
Substituting the values of x and dxdy\frac{dx}{dy} in equation(1),we get:
v+ydvdy=ev(1v)1+evv+y\frac{dv}{dy}=\frac{-e^v(1-v)}{1+e^v}
ydvdy=ev+vev1+evv⇒y\frac{dv}{dy}=\frac{-e^v+ve^v}{1+e^v}-v
ydvdy=ev+vevvvev1+ev⇒y\frac{dv}{dy}=\frac{-e^v+ve^v-v-ve^v}{1+e^v}
ydvdy=[v+ev1+ev]⇒y\frac{dv}{dy}=-[\frac{v+e^v}{1+e^v}]
[1+evv+ev]dv=dyy⇒[\frac{1+e^v}{v+e^v}]dv=\frac{-dy}{y}
Integrating both sides,we get:
log(v+ev)=logy+logC=log(Cy)⇒log(v+e^v)=-logy+logC=log(\frac{C}{y})
[xy+exy]=Cy⇒[\frac{x}{y}+e^{\frac{x}{y}}]=\frac{C}{y}
x+yexy=C⇒x+ye^{\frac{x}{y}}=C
This is the required solution of the given differential equation.