Solveeit Logo

Question

Mathematics Question on Differential equations

Show that the given differential equation is homogeneous and solve:ydx+xlog(yx)dy2xdy=0y\,dx+xlog(\frac{y}{x})dy-2x\,dy=0

Answer

ydx+xlog(yx)dy2xdy=0y\,dx+xlog(\frac{y}{x})dy-2x\,dy=0
ydx=[2xxlog(yx)]dy⇒y\,dx=[2x-xlog(\frac{y}{x})]dy
dydx=y2xxlog(yx)....(1)⇒\frac{dy}{dx}=\frac{y}{2x-xlog(\frac{y}{x})}....(1)
Let F(x,y)=y2xxlog(yx).F(x,y)=\frac{y}{2x-xlog(\frac{y}{x})}.
F(λx,λy)=λy2(λx)(λx)log(λyλx)=y2xlog(yx)=λ.F(x,y)∴F(λx,λy)=\frac{λy}{2(λx)-(λx)log(\frac{λy}{λx})}=\frac{y}{2x-log(\frac{y}{x})}=λ.F(x,y)
Therefore,the given differential equation is a homogenous equation.
To solve it,we make the substitution as:
y=vxy=vx
dydx=ddx(vx)⇒\frac{dy}{dx}=\frac{d}{dx}(vx)
dydx=v+xdvdx⇒\frac{dy}{dx}=v+x\frac{dv}{dx}
Substituting the values of y and dydx\frac{dy}{dx} in equation(1),we get:
v+xdvdx=vx2xxlogvv+x\frac{dv}{dx}=\frac{vx}{2x-xlogv}
v+xdvdx=v2logv⇒v+x\frac{dv}{dx}=\frac{v}{2-logv}
xdvdx=v2logvv⇒x\frac{dv}{dx}=\frac{v}{2-logv}-v
xdvdx=v2v+vlogv2logv⇒x\frac{dv}{dx}=\frac{v-2v+v\,logv}{2-logv}
xdvdx=vlogvv2logv⇒x\frac{dv}{dx}=\frac{v\,logv-v}{2-logv}
2logvv(logv1)dv=dxx⇒\frac{2-logv}{v(logv-1)}dv=\frac{dx}{x}
[(1+(1logv)v(logv1)]dv=dxx⇒[\frac{(1+(1-logv)}{v(logv-1)}]dv=\frac{dx}{x}
[1v(logv1)1v]dv=dxx⇒[\frac{1}{v(logv-1)}-\frac{1}{v}]dv=\frac{dx}{x}
Integrating both sides,we get:
1v(logv1)dv1vdv=1xdx∫\frac{1}{v(logv-1)}dv-∫\frac{1}{v}dv=∫\frac{1}{x}dx
dvv(logv1)logv=logx+logC...(2)⇒∫\frac{dv}{v(logv-1)}-logv=logx+logC...(2)
Letlogv1=t⇒Let\,\, log\,v-1=t
ddv=(logv1)=dtdv⇒\frac{d}{dv}=(logv-1)=\frac{dt}{dv}
1v=dtdv⇒\frac{1}{v}=\frac{dt}{dv}
dvv=dt⇒\frac{dv}{v}=dt
Therefore,equation(1),becomes:
dttlogv=logx+logC⇒∫\frac{dt}{t}-logv=logx+logC
logtlog(yx)=log(Cx)⇒logt-log(\frac{y}{x})=log(Cx)
log[log(yx)1]log(yx)=(Cx)⇒log[log(\frac{y}{x})-1]-log(\frac{y}{x})=(Cx)
log[log(yx)1yx]=log(Cx)⇒log[\frac{log(\frac{y}{x})-1}{\frac{y}{x}}]=log(Cx)
xy[log(yx)1]=Cx⇒\frac{x}{y}[log(\frac{y}{x})-1]=Cx
log(yx)1=Cy⇒log(\frac{y}{x})-1=Cy
This is the required solution of the given differential equation.