Question
Mathematics Question on Differential equations
Show that the given differential equation is homogeneous and solve:ydx+xlog(xy)dy−2xdy=0
ydx+xlog(xy)dy−2xdy=0
⇒ydx=[2x−xlog(xy)]dy
⇒dxdy=2x−xlog(xy)y....(1)
Let F(x,y)=2x−xlog(xy)y.
∴F(λx,λy)=2(λx)−(λx)log(λxλy)λy=2x−log(xy)y=λ.F(x,y)
Therefore,the given differential equation is a homogenous equation.
To solve it,we make the substitution as:
y=vx
⇒dxdy=dxd(vx)
⇒dxdy=v+xdxdv
Substituting the values of y and dxdy in equation(1),we get:
v+xdxdv=2x−xlogvvx
⇒v+xdxdv=2−logvv
⇒xdxdv=2−logvv−v
⇒xdxdv=2−logvv−2v+vlogv
⇒xdxdv=2−logvvlogv−v
⇒v(logv−1)2−logvdv=xdx
⇒[v(logv−1)(1+(1−logv)]dv=xdx
⇒[v(logv−1)1−v1]dv=xdx
Integrating both sides,we get:
∫v(logv−1)1dv−∫v1dv=∫x1dx
⇒∫v(logv−1)dv−logv=logx+logC...(2)
⇒Letlogv−1=t
⇒dvd=(logv−1)=dvdt
⇒v1=dvdt
⇒vdv=dt
Therefore,equation(1),becomes:
⇒∫tdt−logv=logx+logC
⇒logt−log(xy)=log(Cx)
⇒log[log(xy)−1]−log(xy)=(Cx)
⇒log[xylog(xy)−1]=log(Cx)
⇒yx[log(xy)−1]=Cx
⇒log(xy)−1=Cy
This is the required solution of the given differential equation.