Question
Mathematics Question on Differential equations
Show that the given differential equation is homogeneous and solve:xdxdy−y+sinx(xy)=0
Answer
xdxdy−y+sinx(xy)=0
⇒xdxdy=y−xsin(xy)
⇒dxdy=xy−xsin(xy)...(1)
Let F(x,y)=xy−xsin(xy).
∴F(λx,λy)=λxλy−λxsin(λxλy)=xy−sinx(xy)=λ.F(x,y)
Therefore,the given differential equation is a homogenous equation.
To solve it,we make the substitution as:
y=vx
⇒dxd(y)=dxd(vx)
⇒dxdy=v+xdxdv
Substituting the values of y and dxdy in equation(1),we get:
v+xdxdv=xvx−xsinv
⇒v+xdxdv=v−sinv
⇒−sinvdv=xdx
⇒cosecvdv=x−dx
Integrating both sides,we get:
log∣cosecv−cotv∣=−logx+logC=logxC
⇒cosec(xy)−cot(xy)=xC
⇒sin(xy)1−sin(xy)cos(xy)=xC
⇒x[1−cos(xy)]=Csin(xy)
This is the required solution of the given differential equation.