Solveeit Logo

Question

Mathematics Question on Differential equations

Show that the given differential equation is homogeneous and solve:xdydxy+sinx(yx)=0x\frac{dy}{dx}-y+sinx(\frac{y}{x})=0

Answer

xdydxy+sinx(yx)=0x\frac{dy}{dx}-y+sinx(\frac{y}{x})=0
xdydx=yxsin(yx)⇒x\frac{dy}{dx}=y-xsin(\frac{y}{x})
dydx=yxsin(yx)x...(1)⇒\frac{dy}{dx}=\frac{y-xsin(\frac{y}{x})}{x}...(1)
Let F(x,y)=yxsin(yx)x.F(x,y)=\frac{y-xsin(\frac{y}{x})}{x}.
F(λx,λy)=λyλxsin(λyλx)λx=ysinx(yx)x=λ.F(x,y)∴F(λx,λy)=\frac{λy-λxsin(\frac{λy}{λx})}{λx}=\frac{y-sinx(\frac{y}{x})}{x}=λ.F(x,y)
Therefore,the given differential equation is a homogenous equation.
To solve it,we make the substitution as:
y=vxy=vx
ddx(y)=ddx(vx)⇒\frac{d}{dx}(y)=\frac{d}{dx}(vx)
dydx=v+xdvdx⇒\frac{dy}{dx}=v+x\frac{dv}{dx}
Substituting the values of y and dydx\frac{dy}{dx} in equation(1),we get:
v+xdvdx=vxxsinvxv+x\frac{dv}{dx}=\frac{vx-xsinv}{x}
v+xdvdx=vsinv⇒v+x\frac{dv}{dx}=v-sinv
dvsinv=dxx⇒-\frac{dv}{sinv}=\frac{dx}{x}
cosecvdv=dxx⇒cosec\,v\,\, dv=\frac{-dx}{x}
Integrating both sides,we get:
logcosecvcotv=logx+logC=logCxlog|cosec\,v-cotv|=-logx+logC=log \frac{C}{x}
cosec(yx)cot(yx)=Cx⇒cosec(\frac{y}{x})-cot(\frac{y}{x})=\frac{C}{x}
1sin(yx)cos(yx)sin(yx)=Cx⇒\frac{1}{sin(\frac{y}{x})}-\frac{cos(\frac{y}{x})}{sin(\frac{y}{x})}=\frac{C}{x}
x[1cos(yx)]=Csin(yx)⇒x[1-cos(\frac{y}{x})]=Csin(\frac{y}{x})
This is the required solution of the given differential equation.