Solveeit Logo

Question

Mathematics Question on Differential equations

Show that the given differential equation is homogeneous and solve:xcos(yx)+ysin(yx)ydx=ysin(yx)xcos(yx)xdy{xcos(\frac{y}{x})+ysin(\frac{y}{x})}y\,dx={ysin(\frac{y}{x})-xcos(\frac{y}{x})}x\,dy

Answer

The given differential equation is:
xcos(yx)+ysin(yx)ydx=ysin(yx)xcos(yx)xdy{xcos(\frac{y}{x})+ysin(\frac{y}{x})}y\,dx={ysin(\frac{y}{x})-xcos(\frac{y}{x})}x\,dy
dydx=xcos(yx)+ysin(yx)yysin(yx)xcos(yx)x...(1)\frac{dy}{dx}=\frac{{xcos(\frac{y}{x})+ysin(\frac{y}{x})}y}{{ysin(\frac{y}{x})-xcos(\frac{y}{x})}x}...(1)
Let F(x,y)=xcos(yx)+ysin(yx)yysin(yx)xcos(yx)xF(x,y)=\frac{{xcos(\frac{y}{x})+ysin(\frac{y}{x})}y}{{ysin(\frac{y}{x})-xcos(\frac{y}{x})}x}
∴F(λx,λy)=\frac{{λxcos(\frac{λy}{λx})+λysin(\frac{λy}{λx})}λy}{{λysin(\frac{λy}{λx})-λxsin(\frac{λy}{λx})}λx}$$=\frac{{xcos(\frac{y}{x})+ysin(\frac{y}{x})}y}{{ysin(\frac{y}{x})-xcos(\frac{y}{x})}x}$$=λ.F(x,y)
Therefore,the given differential equation is a homogenous equation.
To solve it,we make the substitution as:
y=vxy=vx
dydx=v+x=dydx⇒\frac{dy}{dx}=v+x=\frac{dy}{dx}
Substituting the values of y and dydx\frac{dy}{dx} in equation(1),we get:
v+xdvdx=(xcosv+vxsinv).vx(vxsinvxcosv).xv+x\frac{dv}{dx}=\frac{(xcosv+vx sinv).vx}{(vx sinv-xcosv).x}
v+xdvdx=vcosv+v2sinvvsinvcosv⇒v+x\frac{dv}{dx}=\frac{vcosv+v^2sinv}{vsinv-cosv}
xdvdx=vcosv+v2sinvvsinvcosvv⇒x\frac{dv}{dx}=\frac{vcosv+v^2sinv}{vsinv-cosv}-v
xdvdx=vcosv+v2sinvv2sinv+vcosvvsinvcosv⇒x\frac{dv}{dx}=\frac{vcosv+v^2sinv-v^2sinv+vcosv}{vsinv-cosv}
xdvdx=2cosvvsinvcosv⇒x\frac{dv}{dx}=\frac{2cosv}{vsinv-cosv}
[vsinvcosvvcosv]dv=2dxx⇒[\frac{vsinv-cosv}{vcosv}]dv=2\frac{dx}{x}
(tan1vv)dv=2dxx⇒(\frac{tan^{-1}v}{v})dv=2\frac{dx}{x}
Integrating both sides,we get:
log(secv)logv=2logx+logClog(secv)-logv=2logx+logC
log(secvv)=log(Cx)2⇒log(\frac{secv}{v})=log(Cx)^2
(secvv)=Cx2⇒(\frac{secv}{v})=Cx^2
secv=Cx2v⇒secv=Cx^2v
sec(yx)=C.x2.yx⇒sec(\frac{y}{x})=C.x^2.\frac{y}{x}
sec(yx)=Cxy⇒sec(\frac{y}{x})=Cxy
cos(yx)=1cxy=1C.1xy⇒cos(\frac{y}{x})=\frac{1}{cxy}=\frac{1}{C}.\frac{1}{xy}
xycos(yx)=k (k=1C)⇒xy\, cos(\frac{y}{x})=k\,\,\ (k=\frac{1}{C})
This is the required solution of the given differential equation.