Question
Mathematics Question on Differential equations
Show that the given differential equation is homogeneous and solve:xcos(xy)+ysin(xy)ydx=ysin(xy)−xcos(xy)xdy
The given differential equation is:
xcos(xy)+ysin(xy)ydx=ysin(xy)−xcos(xy)xdy
dxdy=ysin(xy)−xcos(xy)xxcos(xy)+ysin(xy)y...(1)
Let F(x,y)=ysin(xy)−xcos(xy)xxcos(xy)+ysin(xy)y
∴F(λx,λy)=\frac{{λxcos(\frac{λy}{λx})+λysin(\frac{λy}{λx})}λy}{{λysin(\frac{λy}{λx})-λxsin(\frac{λy}{λx})}λx}$$=\frac{{xcos(\frac{y}{x})+ysin(\frac{y}{x})}y}{{ysin(\frac{y}{x})-xcos(\frac{y}{x})}x}$$=λ.F(x,y)
Therefore,the given differential equation is a homogenous equation.
To solve it,we make the substitution as:
y=vx
⇒dxdy=v+x=dxdy
Substituting the values of y and dxdy in equation(1),we get:
v+xdxdv=(vxsinv−xcosv).x(xcosv+vxsinv).vx
⇒v+xdxdv=vsinv−cosvvcosv+v2sinv
⇒xdxdv=vsinv−cosvvcosv+v2sinv−v
⇒xdxdv=vsinv−cosvvcosv+v2sinv−v2sinv+vcosv
⇒xdxdv=vsinv−cosv2cosv
⇒[vcosvvsinv−cosv]dv=2xdx
⇒(vtan−1v)dv=2xdx
Integrating both sides,we get:
log(secv)−logv=2logx+logC
⇒log(vsecv)=log(Cx)2
⇒(vsecv)=Cx2
⇒secv=Cx2v
⇒sec(xy)=C.x2.xy
⇒sec(xy)=Cxy
⇒cos(xy)=cxy1=C1.xy1
⇒xycos(xy)=k (k=C1)
This is the required solution of the given differential equation.