Solveeit Logo

Question

Mathematics Question on Differential equations

Show that the given differential equation is homogeneous and solve:xdyydx=x2+y2dx.x\,dy-y\,dx=\sqrt{x^2+y^2}\,dx.

Answer

xdyydx=x2+y2dx.x\,dy-y\,dx=\sqrt{x^2+y^2}\,dx.
xdy=[y+x2+y2]dx⇒xdy=[y+\sqrt{x^2+y^2}]dx
dydx=y+x2+y2x2...(1)\frac{dy}{dx}=y+\sqrt{x^2+\frac{y^2}{x^2}}...(1)
Let F(x,y)=y+x2+y2x2F(x,y)=y+\sqrt{x^2+\frac{y^2}{x^2}}
F(λx,λy)=λx+(λx)2+(λy)2λx=y+x2+y2x=λ.F(x,y)∴F(λx,λy)=λx+\sqrt{(λx)^2+\frac{(λy)^2}{λx}}=y+\sqrt{x^2+\frac{y^2}{x}}=λ.F(x,y)
Therefore,the given differential equation is a homogenous equation.
To solve it,we make the substitution as:
y=vxy=vx
ddx(y)=ddx(vx)⇒\frac{d}{dx}(y)=\frac{d}{dx}(vx)
dydx=v+xdvdx⇒\frac{dy}{dx}=v+x\frac{dv}{dx}
Substituting the values of v and dydx\frac{dy}{dx} in equation(1),we get:
v+xdvdx=vx+x2+(vx)2xv+x\frac{dv}{dx}=vx+\sqrt{x^2+\frac{(vx)^2}{x}}
v+xdvdx=v+1+v2⇒v+x\frac{dv}{dx}=v+\sqrt{1+v^2}
dv1+v2=dxx⇒\frac{dv}{\sqrt{1+v^2}}=\frac{dx}{x}
Integrating both sides,we get:
logv+1+v2=logx+logClog|v+\sqrt{1+v^2}|=log|x|+logC
logyx+1+y2x2=logCx⇒log|\frac{y}{x}+\sqrt{1+\frac{y^2}{x^2}}|=log|Cx|
logy+x2+y2x=logCx⇒log|\frac{y+\sqrt{x^2+y^2}}{x}|=log|Cx|
y+x2+y2=Cx2⇒y+\sqrt{x^2+y^2}=Cx^2
This is the required solution of the given differential equation.