Question
Mathematics Question on Differential equations
Show that the given differential equation is homogeneous and solve:xdy−ydx=x2+y2dx.
Answer
xdy−ydx=x2+y2dx.
⇒xdy=[y+x2+y2]dx
dxdy=y+x2+x2y2...(1)
Let F(x,y)=y+x2+x2y2
∴F(λx,λy)=λx+(λx)2+λx(λy)2=y+x2+xy2=λ.F(x,y)
Therefore,the given differential equation is a homogenous equation.
To solve it,we make the substitution as:
y=vx
⇒dxd(y)=dxd(vx)
⇒dxdy=v+xdxdv
Substituting the values of v and dxdy in equation(1),we get:
v+xdxdv=vx+x2+x(vx)2
⇒v+xdxdv=v+1+v2
⇒1+v2dv=xdx
Integrating both sides,we get:
log∣v+1+v2∣=log∣x∣+logC
⇒log∣xy+1+x2y2∣=log∣Cx∣
⇒log∣xy+x2+y2∣=log∣Cx∣
⇒y+x2+y2=Cx2
This is the required solution of the given differential equation.