Solveeit Logo

Question

Mathematics Question on Differential equations

Show that the given differential equation is homogeneous and solve:x2dydx=x22y2+xyx^2\frac{dy}{dx}=x^2-2y^2+xy

Answer

The differential equation is:
x2dydx=x22y2+xyx^2\frac{dy}{dx}=x^2-2y^2+xy
dydx=x22y2+xyx2...(1)\frac{dy}{dx}=\frac{x^2-2y^2+xy}{x^2}...(1)
Let F(x,y)=x22y2+xyx2F(x,y)=\frac{x^2-2y^2+xy}{x^2}
F(λx,λy)=(λx)22(λy)2+(λx)(λy)(λx)2=x22y2+xyx2=λ.F(x,y)∴F(λx,λy)=\frac{(λx)^2-2(λy)^2+(λx)(λy)}{(λx)^2}=\frac{x^2-2y^2+xy}{x^2}=λ.F(x,y)
Therefore,the given differential equation is a homogenous equation.
To solve it,we make the substitution as:
y=vxy=vx
dydx=v+xdvdx⇒\frac{dy}{dx}=v+x\frac{dv}{dx}
Substituting the values of y and dydx\frac{dy}{dx} in equation(1),we get:
v+xdvdx=x22(vx)2+x.(vx)x2v+x\frac{dv}{dx}=\frac{x^2-2(vx)^2+x.(vx)}{x^2}
v+xdvdx=12v2+v⇒v+x\frac{dv}{dx}=1-2v^2+v
xdvdx=12v2⇒x\frac{dv}{dx}=1-2v^2
dv12v2=dxx⇒\frac{dv}{1-2v^2}=\frac{dx}{x}
Integrating both sides,we get:
    112v2dv=1xdx\implies \int\frac{1}{1-2v^2}dv=\int\frac{1}{x}dx
    1(1)2(2v)2dv=1xdx\implies \int\frac{1}{(1)^2-(\sqrt{2v})^2}dv=\int\frac{1}{x}dx
    122log1+2yx12yx=logx+c\implies \frac{1}{2\sqrt2}log\bigg|\frac{1+\sqrt2\frac{y}{x}}{1-\sqrt2\frac{y}{x}}\bigg|=log|x|+c
    122logx+2y12y=logx+c\implies \frac{1}{2\sqrt2}log\bigg|\frac{x+\sqrt2y}{1-\sqrt2y}\bigg|=log|x|+c
This is the required solution for the given differential equation.