Question
Mathematics Question on Differential equations
Show that the given differential equation is homogeneous and solve:x2dxdy=x2−2y2+xy
Answer
The differential equation is:
x2dxdy=x2−2y2+xy
dxdy=x2x2−2y2+xy...(1)
Let F(x,y)=x2x2−2y2+xy
∴F(λx,λy)=(λx)2(λx)2−2(λy)2+(λx)(λy)=x2x2−2y2+xy=λ.F(x,y)
Therefore,the given differential equation is a homogenous equation.
To solve it,we make the substitution as:
y=vx
⇒dxdy=v+xdxdv
Substituting the values of y and dxdy in equation(1),we get:
v+xdxdv=x2x2−2(vx)2+x.(vx)
⇒v+xdxdv=1−2v2+v
⇒xdxdv=1−2v2
⇒1−2v2dv=xdx
Integrating both sides,we get:
⟹∫1−2v21dv=∫x1dx
⟹∫(1)2−(2v)21dv=∫x1dx
⟹221log1−2xy1+2xy=log∣x∣+c
⟹221log1−2yx+2y=log∣x∣+c
This is the required solution for the given differential equation.