Question
Mathematics Question on Differential equations
Show that the given differential equation is homogeneous and solve:(x2−y2)dx+2xydy=0
Answer
The differential equation is:
(x2−y2)dx+2xydy=0
⇒dxdy=−2xy(x2−y2)...(1)
Let F(x,y)=-(x2-y2)/2xy.
∴F(λx,λy)=[2(λx)(λy)(λx)2−(λy)2]=−2xy(x2−y2)=λ.F(x,y)
Therefore,the given differential equation is a homogenous equation.
To solve it,we make the substitution as:
y=vx
⇒dxd(y)=dxd(vx)
⇒dxdy=v+xdxdv
Substituting the values of y and dxdy in equation(1),we get:
v+xdxdv=−[2x.(vx)x2−(vx)2]
v+xdxdv=2vv2−1
⇒xdxdv=2vv2−1−v=2vv2−1−2v2
⇒xdxdv=−2v(1+v2)
⇒1+v22vdv=−xdx
Integrating both sides,we get:
log(1+v2)=−logx+logC=logxC
⇒1+v2=xC
⇒[1+x2y2]=xC
⇒x2+y2=Cx
This is the required solution of the given differential equation.