Solveeit Logo

Question

Mathematics Question on Differential equations

Show that the given differential equation is homogeneous and solve:(x2y2)dx+2xydy=0(x^2-y^2)dx+2xy\,dy=0

Answer

The differential equation is:
(x2y2)dx+2xydy=0(x^2-y^2)dx+2xy\,dy=0
dydx=(x2y2)2xy...(1)⇒\frac{dy}{dx}=-\frac{(x^2-y^2)}{2xy}...(1)
Let F(x,y)=-(x2-y2)/2xy.
F(λx,λy)=[(λx)2(λy)22(λx)(λy)]=(x2y2)2xy=λ.F(x,y)∴F(λx,λy)=[\frac{(λx)^2-(λy)^2}{2(λx)(λy)}]=-\frac{(x^2-y^2)}{2xy}=λ.F(x,y)
Therefore,the given differential equation is a homogenous equation.
To solve it,we make the substitution as:
y=vxy=vx
ddx(y)=ddx(vx)⇒\frac{d}{dx}(y)=\frac{d}{dx}(vx)
dydx=v+xdvdx⇒\frac{dy}{dx}=v+x\frac{dv}{dx}
Substituting the values of y and dydx\frac{dy}{dx} in equation(1),we get:
v+xdvdx=[x2(vx)22x.(vx)]v+x\frac{dv}{dx}=-[\frac{x^2-(vx)^2}{2x.(vx)}]
v+xdvdx=v212vv+x\frac{dv}{dx}=\frac{v^2-1}{2v}
xdvdx=v212vv=v212v22v⇒x\frac{dv}{dx}=\frac{v^2-1}{2v}-v=\frac{v^2-1-2v^2}{2v}
xdvdx=(1+v2)2v⇒x\frac{dv}{dx}=-\frac{(1+v^2)}{2v}
2v1+v2dv=dxx⇒\frac{2v}{1+v^2}dv=-\frac{dx}{x}
Integrating both sides,we get:
log(1+v2)=logx+logC=logCxlog(1+v^2)=-logx+logC=log\frac{C}{x}
1+v2=Cx⇒1+v^2=\frac{C}{x}
[1+y2x2]=Cx⇒[1+\frac{y^2}{x^2}]=\frac{C}{x}
x2+y2=Cx⇒x^2+y^2=Cx
This is the required solution of the given differential equation.