Question
Mathematics Question on Differential equations
Show that the given differential equation is homogeneous and solve:(x−y)dy−(x+y)dx=0
The given differential equation is:
(x−y)dy−(x+y)dx=0
⇒dxdy=x−yx+y...(1)
Let F(x,y)=x−yx+y
∴F(λx,λy)=λx−λyλx+λy=λ.F(x,y)
Thus,the given differential equation is a homogenous equation.
To solve it,we make the substitution as:
y=vx
⇒dxd(y)=dxd(vx)
⇒dxdy=v+xdxdy
Substituting the values of y and dxdy in equation(1),we get:
v+xdxdv=x−vxx+vx=1−v1+v
xdxdv=1−v−v1+v=1−v1+v−v(1−v)
⇒xdxdv=1−v1+v2
⇒(1+v)21−vdv=xdx
⇒(1+v21−1−v21)dv=xdx
Integrating both sides,we get:
tan−1v−21log(1+v2)=logx+C
⇒tan−1(xy)−21log[1+(xy)2]logx+C
⇒tan−1(xy)−21log(x2+x2y2)=logx+C
⇒tan−1(xy)−21[log(x2+y2)−logx2]=logx+C
⇒tan−1(xy)=21log(x2+y2)+C
This is the required solution of the given differential equation.