Solveeit Logo

Question

Mathematics Question on Differential equations

Show that the given differential equation is homogeneous and solve:(xy)dy(x+y)dx=0(x-y)dy-(x+y)dx=0

Answer

The given differential equation is:
(xy)dy(x+y)dx=0(x-y)dy-(x+y)dx=0
dydx=x+yxy...(1)⇒\frac{dy}{dx}=\frac{x+y}{x-y}...(1)
Let F(x,y)=x+yxyF(x,y)=\frac{x+y}{x-y}
F(λx,λy)=λx+λyλxλy=λ.F(x,y)∴F(λx,λy)=\frac{λx+λy}{λx-λy}=λ.F(x,y)
Thus,the given differential equation is a homogenous equation.
To solve it,we make the substitution as:
y=vxy=vx
ddx(y)=ddx(vx)⇒\frac{d}{dx}(y)=\frac{d}{dx}(vx)
dydx=v+xdydx⇒\frac{dy}{dx}=v+x \frac{dy}{dx}
Substituting the values of y and dydx\frac{dy}{dx} in equation(1),we get:
v+xdvdx=x+vxxvx=1+v1vv+x \frac{dv}{dx}=\frac{x+vx}{x-vx}=\frac{1+v}{1-v}
xdvdx=1+v1vv=1+vv(1v)1vx\frac{dv}{dx}=\frac{1+v}{1-v-v}=\frac{1+v-v(1-v)}{1-v}
xdvdx=1+v21v⇒x\frac{dv}{dx}=\frac{1+v^2}{1-v}
1v(1+v)2dv=dxx⇒\frac{1-v}{(1+v)^2}dv=\frac{dx}{x}
(11+v211v2)dv=dxx⇒(\frac{1}{1+v^2}-\frac{1}{1-v^2})dv=\frac{dx}{x}
Integrating both sides,we get:
tan1v12log(1+v2)=logx+Ctan^{-1}v-\frac{1}{2}log(1+v^2)=logx+C
tan1(yx)12log[1+(yx)2]logx+C⇒tan^{-1}(\frac{y}{x})-\frac{1}{2}log[1+(\frac{y}{x})^2]logx+C
tan1(yx)12log(x2+y2x2)=logx+C⇒tan^{-1}(\frac{y}{x})-\frac{1}{2}log(x^2+\frac{y^2}{x^2})=logx+C
tan1(yx)12[log(x2+y2)logx2]=logx+C⇒tan^{-1}(\frac{y}{x})-\frac{1}{2}[log(x^2+y^2)-logx^2]=logx+C
tan1(yx)=12log(x2+y2)+C⇒tan{-1}(\frac{y}{x})=\frac{1}{2}log(x^2+y^2)+C
This is the required solution of the given differential equation.