Solveeit Logo

Question

Mathematics Question on Differential equations

Show that the given differential equation is homogeneous and solve:(x2+xy)dy=(x2+y2)dx(x^2+xy)dy=(x^2+y^2)dx

Answer

The given differential equation i.e.,(x2+xy)dy=(x2+y2)dx(x^2+xy)dy=(x^2+y^2)dx can be written as:
dydx=x2+y2x2+xy...(1)\frac{dy}{dx}=\frac{x^2+y^2}{x^2+xy}...(1)
Let F(x,y)=x2+y2x2+xyF(x,y)=\frac{x^2+y^2}{x^2+xy}
Now,F(λx,λy)=(λx)2+(λy)2(λx)2(λx)(λy)=x2+y2x2+xy=λ.F(x,y)F(λx,λy)=\frac{(λx)^2+(λy)^2}{(λx)^2(λx)(λy)}=\frac{x^2+y^2}{x^2+xy}=λ.F(x,y)
This shows that equation(1)is a homogeneous equation.
To solve it we make the substitution as:
y=vxy=vx
Differentiating both sides with respect to x,we get:
dydx=v+xdvdx\frac{dy}{dx}=v+\frac{xdv}{dx}
Substituting the value of v and dydx\frac{dy}{dx} in equation(1),we get:
v+dvdx=x2+(vx)2x2+x(vx)v+\frac{dv}{dx}=\frac{x^2+(vx)^2}{x^2+x(vx)}
v+xdvdx=1+v21+v⇒v+x \frac{dv}{dx}=\frac{1+v^2}{1+v}
xdvdx=1+v21+vv=(1+v)2v(1+v)1+v⇒x\frac{dv}{dx}=\frac{1+v^2}{1+v-v}=\frac{(1+v)^2-v(1+v)}{1+v}
xdvdx=1v1+v⇒x\frac{dv}{dx}=\frac{1-v}{1+v}
(1+v1v)=dv=dxx⇒(\frac{1+v}{1-v})=dv=\frac{dx}{x}
(21+v1v)dv=dxx⇒(\frac{2-1+v}{1-v})dv=\frac{dx}{x}
(21v1)dv=dxx⇒(\frac{2}{1-v}-1)dv=\frac{dx}{x}
Integrating,both sides,we get:
2log(1v)v=logxlogk-2log(1-v)-v=logx-logk
v=2log(1v)logx+logk⇒v=-2log(1-v)-logx+logk
v=log[kx(1v)2]⇒v=log[\frac{k}{x(1-v)^2}]
yx=log[kx(1yx)2]⇒\frac{y}{x}=log[\frac{k}{x(1-\frac{y}{x})^2}]
yx=log[kx(xy)2]⇒\frac{y}{x}=log[\frac{kx}{(x-y)^2}]
kx(xy)2=eyx⇒\frac{kx}{(x-y)^2}=\frac{ey}{x}
(xy)2=kxeyx⇒(x-y)^2=kxe^ {-\frac{y}{x}}
This is the required solution of the given differential equation.