Question
Mathematics Question on Differential equations
Show that the given differential equation is homogeneous and solve:(x2+xy)dy=(x2+y2)dx
The given differential equation i.e.,(x2+xy)dy=(x2+y2)dx can be written as:
dxdy=x2+xyx2+y2...(1)
Let F(x,y)=x2+xyx2+y2
Now,F(λx,λy)=(λx)2(λx)(λy)(λx)2+(λy)2=x2+xyx2+y2=λ.F(x,y)
This shows that equation(1)is a homogeneous equation.
To solve it we make the substitution as:
y=vx
Differentiating both sides with respect to x,we get:
dxdy=v+dxxdv
Substituting the value of v and dxdy in equation(1),we get:
v+dxdv=x2+x(vx)x2+(vx)2
⇒v+xdxdv=1+v1+v2
⇒xdxdv=1+v−v1+v2=1+v(1+v)2−v(1+v)
⇒xdxdv=1+v1−v
⇒(1−v1+v)=dv=xdx
⇒(1−v2−1+v)dv=xdx
⇒(1−v2−1)dv=xdx
Integrating,both sides,we get:
−2log(1−v)−v=logx−logk
⇒v=−2log(1−v)−logx+logk
⇒v=log[x(1−v)2k]
⇒xy=log[x(1−xy)2k]
⇒xy=log[(x−y)2kx]
⇒(x−y)2kx=xey
⇒(x−y)2=kxe−xy
This is the required solution of the given differential equation.