Solveeit Logo

Question

Mathematics Question on Differential equations

Show that the given differential equation is homogeneous and solve:y=x+yxy'=\frac{x+y}{x}

Answer

The given differential equation is:
y=x+yxy'=\frac{x+y}{x}
dysx=x+yx\frac{dy}{sx}=\frac{x+y}{x}
Let F(x,y)=x+yx.F(x,y)=\frac{x+y}{x}.
Now,F(λx,λy)=λx+λyλx=x+yx=λ=F(x,y)F(λx,λy)=\frac{λx+λy}{λx}=\frac{x+y}{x}=λ=F(x,y)
Thus the given equation is a homogenous equation.
To solve it,we make the substitution as:
y=vxy=vx
Differentiating both sides with respect to x,we get:
dydx=v+xdvdx\frac{dy}{dx}=v+\frac{xdv}{dx}
Substituting the values of y and dy/dx in equation(1),we get:
v+xdxdy=x+vxxv+x \frac{dx}{dy}=x+\frac{vx}{x}
v+xdvdx=1+v⇒v+x\frac{dv}{dx}=1+v
xdvdx=1x\frac{dv}{dx}=1
dv=dxx⇒dv=\frac{dx}{x}
Integrating both sides,we get:
v=logx+Cv=logx+C
yx=logx+C⇒\frac{y}{x}=logx+C
y=xlogx+Cx⇒y=xlogx+Cx
This is the required solution of the given differential equation.