Solveeit Logo

Question

Question: Show that the function \(h\left( x \right)=\tan x\) is differentiable at any \(a\in \mathbb{R}\) and...

Show that the function h(x)=tanxh\left( x \right)=\tan x is differentiable at any aRa\in \mathbb{R} and aa is not an odd multiple of π2\dfrac{\pi }{2} and h(a)=sec2ah'\left( a \right)={{\sec }^{2}}a. In general, if xx is not an odd multiple of π2\dfrac{\pi }{2}, then h(x)=sec2x.h'\left( x \right)={{\sec }^{2}}x..

Explanation

Solution

Hint: To check the differentiability of a function, we will find the derivative of the function. To find the derivative h(x)h'\left( x \right) of the function h(x)h\left( x \right), we can use the first principle of derivative and the functional relations given in the question.

Complete step-by-step answer:
In the question, it is given a function; h(x)=tanxh\left( x \right)=\tan x
To check differentiability of this function, we have to find the derivative of h(x)h\left( x \right). To find the derivative of the given function, we will use the first principle of derivative from which, the derivative of any function is given by the formula;
f(x)=limh0f(x+h)f(x)h\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}
In the question, the function is h(x)=tanxh\left( x \right)=\tan x. Substituting h(x)=tanxh\left( x \right)=\tan xand h(x+h)=tan(x+h)h\left( x+h \right)=\tan (x+h), we get;
h(x)=limh0(tan(x+h)tanx)h\Rightarrow h'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \tan \left( x+h \right)-\tan x \right)}{h}
We have a formula in trigonometry; tan(x+h)=tanx+tanh1tanxtanh\tan \left( x+h \right)=\dfrac{\tan x+\tan h}{1-\tan x\tan h}. Substituting this formula, we get;

& h'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{\dfrac{\tan x+\tan h}{1-\tan x\tan h}-\tan x}{h} \right) \\\ & \Rightarrow h'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{\tan x+\tan h-\tan x\left( 1-\tan x\tan h \right)}{h\left( 1-\tan x\tan h \right)} \right) \\\ & \Rightarrow h'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan x+\tan h-\tan x+{{\tan }^{2}}x\tan h}{h\left( 1-\tan x\tan h \right)} \\\ & \Rightarrow h'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan h}{h}\dfrac{\left( 1+{{\tan }^{2}}x \right)}{\left( 1-\tan x\tan h \right)} \\\ \end{aligned}$$ Since the limit is with respect to $h$, we can take $1+{{\tan }^{2}}x$ out of the individual limit in the above equation. $\Rightarrow h'\left( x \right)=\left( 1+{{\tan }^{2}}x \right)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan h}{h\left( 1-\tanh \tan x \right)}........\left( I \right)$ In $\left( I \right)$, $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan h}{h\left( 1-\tanh \tan x \right)}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan h}{h}.............\left( II \right)$. Also, we have a formula$\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan h}{h}=1.......\left( III \right)$. Substituting these limits from $\left( II \right)$ and $\left( III \right)$ in equation $\left( I \right)$, we get; $h'\left( x \right)=1+{{\tan }^{2}}x$ Also, from trigonometry, we have a formula; $1+{{\tan }^{2}}x={{\sec }^{2}}x$. $\Rightarrow h'\left( x \right)={{\sec }^{2}}x........\left( IV \right)$ Substituting $x=a$ in the equation $\left( IV \right)$, we get; $h'\left( a \right)={{\sec }^{2}}a$ If we draw the graph of $\Rightarrow h'\left( x \right)={{\sec }^{2}}x$ ![](https://www.vedantu.com/question-sets/754550b3-c7d6-4791-8192-2556e1fb522c4074495085136724387.png) It can be observed that the graph of $h'\left( x \right)$ is discontinuous at $\left\\{ ......\dfrac{-5\pi }{2},\dfrac{-3\pi }{2},\dfrac{-\pi }{2},0,\dfrac{\pi }{2},\dfrac{3\pi }{2},\dfrac{5\pi }{2},..... \right\\}$ i.e., odd multiples of $\dfrac{\pi }{2}.$ This means that $h\left( x \right)$ is non-differentiable at odd multiples of $\dfrac{\pi }{2}.$ $\Rightarrow h\left( x \right)$ is differentiable for $x\in \mathbb{R}-\left\\{ \text{odd multiple of }\dfrac{\pi }{2} \right\\}$ Note: The question can be done directly if one knows the derivatives of $\tan x$ instead of finding the derivatives using the first principle of derivative.