Solveeit Logo

Question

Question: Show that the function \(f\left( x \right)=\sin x\) is differentiable at any \(a\in \mathbb{R}\) and...

Show that the function f(x)=sinxf\left( x \right)=\sin x is differentiable at any aRa\in \mathbb{R} and f(a)=cosa.f'\left( a \right)=\cos a. In general, f(x)=cosxf'\left( x \right)=\cos x for xRx\in \mathbb{R}.

Explanation

Solution

Hint: To check the differentiability, we will find the derivative of the function. To find the derivative of the function f(x)f\left( x \right) , we will use the first principle of derivative and then use the information provided about the function in the question.

Complete step-by-step answer:
It is given in the question, a function f(x)=sinxf\left( x \right)=\sin x.
Since we have to check for differentiability of this function, we have to first find its derivative. To find the derivative, we use first principle from which the derivative f(x)f'\left( x \right) of a function f(x)f\left( x \right) is given by;
f(x)=limh0f(x+h)f(x)hf'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}
For f(x)=sinxf\left( x \right)=\sin x and f(x+h)=sin(x+h)f\left( x+h \right)=\sin \left( x+h \right), we get;
f(x)=limh0sin(x+h)sinxh.........(I)\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( x+h \right)-\sin x}{h}.........\left( I \right)
We have a formula, sin(x+h)=sinxcosh+cosxsinh.........(II)\sin \left( x+h \right)=\sin x\cos h+\cos x\sin h.........\left( II \right)
Substituting sin(x+h)=sinxcosh+cosxsinh\sin \left( x+h \right)=\sin x\cos h+\cos x\sin h from equation (II)\left( II \right) in equation (I)\left( I \right), we get;
f(x)=limh0sinxcosh+cosxsinhsinxh\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin x\cos h+\cos x\sin h-\sin x}{h}
Since limit can be distributed over addition of two functions, we can write;

& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \sin x\cos h-\sin x \right)}{h}+\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\cos x-\sin h}{h} \\\ & \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \sin x \right)\left( \cos h-1 \right)}{h}+\underset{h\to 0}{\mathop{\lim }}\,\cos x\dfrac{\sin h}{h} \\\ \end{aligned}$$ Since the limit is applied with respect to $h$, the functions having $x$ can be taken out of the limit. $\Rightarrow f'\left( x \right)=\sin x\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \cos h-1 \right)}{h}+\cos x\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin h}{h}........\left( III \right)$ Also, we have to formulas of limit; $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \cos h-1 \right)}{h}=0$ and $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin h}{h}=1$. Substituting $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \cos h-1 \right)}{h}=0$ and $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin h}{h}=1$ in equation $\left( III \right)$, we get; $\begin{aligned} & \Rightarrow f'\left( x \right)=\sin x\left( 0 \right)+\cos x\left( 1 \right) \\\ & \Rightarrow f'\left( x \right)=0+\cos x \\\ & \Rightarrow f'\left( x \right)=\cos x \\\ \end{aligned}$ It will be easier to check the differentiability at all the points in the domain of the function i.e. $x\in R$ if we draw the graph of $f'\left( x \right)$ i.e. $\cos x$. Plotting the graph of $f'\left( x \right)=\cos x$; ![](https://www.vedantu.com/question-sets/955386bd-a529-4a6c-853b-d95e55f3eaab6888839053044608534.png) Since the graph of $f'\left( x \right)$ is continuous everywhere, we can say $f\left( x \right)$ is differentiable $\forall x\in \mathbb{R}.$. Also, in $f'\left( x \right)=\cos x$, if we substitute $x=a$, then we get; $f'\left( a \right)=\cos a$ Note: The question can be done directly if one had remembered that the derivative of $\sin x$ is $\cos x$ instead of calculating the derivative using the first principle of derivative which actually makes the question a time taking one.