Solveeit Logo

Question

Mathematics Question on Subsets

Show that the following four conditions are equivalent: (i)AB(ii)AB=ϕ(iii)AB=B(iv)AB=A(i) A ⊂ B (ii) A – B = \phi (iii) A ∪ B = B (iv) A ∩ B = A

Answer

First, we have to show that (i)(ii).(i) ⇔ (ii).
Let ABA ⊂ B
To show: ABϕA – B \ne\phi
If possible, suppose ABϕA – B \ne\phi
This means that there exists xA,xBx ∈ A, x ≠ B, which is not possible as AB.A ⊂ B.
AB=ϕ∴ A – B = \phi
ABAB=ϕ∴ A ⊂ B ⇒ A – B = \phi
Let AB=ϕA – B = \phi
To show: ABA ⊂ B
Let xAx ∈ A
Clearly, xBx ∈ B because if xBx ∉ B, then ABϕA – B ≠ \phi
AB=ϕAB∴ A – B = \phi ⇒ A ⊂ B
(i)(ii)∴ (i) ⇔ (ii)
Let ABA ⊂ B
To show: AB=BA ∪ B = B
Clearly, BABB ⊂ A ∪ B
Let xABx ∈ A ∪ B
xA  orxB⇒ x ∈ A \space or x ∈ B

Case I : xAx ∈ A
xB[AB]⇒ x ∈ B [∴ A ⊂ B]
ABB∴ A ∪ B ⊂ B

Case II : xBx ∈ B
Then, AB=BA ∪ B = B
Conversely, let AB=BA ∪ B = B
Let xAx ∈ A
xAB⇒ x ∈ A ∪ B [AAB][∴ A ⊂ A ∪ B]
xB⇒ x ∈ B [AB=B][ ∴ A ∪ B = B]
AB∴ A ⊂ B

Hence, (i)(iii)(i) ⇔ (iii)
Now, we have to show that (i)(iv).(i) ⇔ (iv).
Let ABA ⊂ B
Clearly ABAA ∩ B ⊂ A
Let xAx ∈ A
We have to show that xABx ∈ A ∩ B
As AB,xBA ⊂ B, x ∈ B
xAB∴ x ∈ A ∩ B
AAB∴ A ⊂ A ∩ B
Hence, A=ABA = A ∩ B
Conversely, suppose. AB=AA ∩ B = A
Let xAx ∈ A
xAB⇒ x ∈ A ∩ B
xA⇒ x ∈ A and xBx ∈ B
xB⇒ x ∈ B
AB∴ A ⊂ B
Hence, (i)(iv).(i) ⇔ (iv).