Solveeit Logo

Question

Mathematics Question on Straight lines

Show that the equation of the line passing through the origin and making an angle θ with the line y=mx+cy=mx+c is yx=m±tanθ1+mtanθ\frac{y}{x}=\frac{m±tanθ}{1-+mtanθ}

Answer

Let the equation of the line passing through the origin be y=m1xy = m_1x.
If this line makes an angle of θ with line y=mx+cy = mx + c, then angle θ is given by
tanθ=m1m1+m1mtanθ=\left|\frac{m_1-m}{1+m_1m}\right|

tanθ=yxm1+yxm⇒tanθ=\left|\frac{\frac{y}{x}-m}{1+\frac{y}{x}m}\right|

tanθ=±(yxm1+yxm)⇒tanθ=±\left(\frac{\frac{y}{x}-m}{1+\frac{y}{x}m}\right)

tanθ=(yxm1+yxm)  or  tanθ=(yxm1+yxm)⇒tanθ=\left(\frac{\frac{y}{x}-m}{1+\frac{y}{x}m}\right) \space or\space tanθ=-\left(\frac{\frac{y}{x}-m}{1+\frac{y}{x}m}\right)

Case I:
tanθ=(yxm1+yxm)tanθ=\left(\frac{\frac{y}{x}-m}{1+\frac{y}{x}m}\right)

tanθ+yxm  tanθ=yxm⇒ tanθ+\frac{y}{x}m\space tanθ=\frac{y}{x}-m

m+tanθ=yx(1m  tanθ)⇒ m+tanθ=\frac{y}{x}(1-m \space tanθ)

yx=m+tanθ1m  tanθ⇒ \frac{y}{x}=\frac{m+tanθ}{1-m\space tanθ}

Case II:
tanθ=(yxm1+yxm)tanθ=-\left(\frac{\frac{y}{x}-m}{1+\frac{y}{x}m}\right)

tanθ+yxm  tanθ=yx+m⇒ tanθ+\frac{y}{x}m\space tanθ=-\frac{y}{x}+m

yx(1+m  tanθ)=mtanθ⇒\frac{ y}{x}(1+m\space tanθ)=m-tanθ

yx=mtanθ1+m  tanθ⇒ \frac{y}{x}=\frac{m-tanθ}{1+m\space tanθ}

Therefore, the required line is given by yx=m±tanθ1+m  tanθ.\frac{y}{x}=\frac{m±tanθ}{1-+m\space tanθ}.