Solveeit Logo

Question

Question: Show that the differential equation \[\dfrac{{dy}}{{dx}} = \dfrac{{{y^2}}}{{xy - {x^2}}}\] is homoge...

Show that the differential equation dydx=y2xyx2\dfrac{{dy}}{{dx}} = \dfrac{{{y^2}}}{{xy - {x^2}}} is homogeneous and also solve it

Explanation

Solution

In this question first order differential equation is given dydx=f(x,y)\dfrac{{dy}}{{dx}} = f(x,y), which is called homogeneous equation. If the right side satisfies the condition f(tx,ty)=f(x,y)f(tx,ty) = f(x,y)for all ff. In other words 1st order differential equation in the form dydx=f(x,y)\dfrac{{dy}}{{dx}} = f(x,y) is homogeneous, if it does not depend on xx and yy separately but only the ratio xy\dfrac{x}{y}or yx\dfrac{y}{x}. Homogeneous equations are in the form dydx=F(yx)\dfrac{{dy}}{{dx}} = F(\dfrac{y}{x}).

Complete step by step answer:
dydx=y2xyx2\dfrac{{dy}}{{dx}} = \dfrac{{{y^2}}}{{xy - {x^2}}}
Now, we will try to show dydx=f(x,y)\dfrac{{dy}}{{dx}} = f(x,y) which does not depend on the xx and yyseparately but only on the ratio xy\dfrac{x}{y} or yx\dfrac{y}{x}.
As given in the differential equation dydx=y2xyx2\dfrac{{dy}}{{dx}} = \dfrac{{{y^2}}}{{xy - {x^2}}}.
So, dydx=y2xyx2\dfrac{{dy}}{{dx}} = \dfrac{{{y^2}}}{{xy - {x^2}}}
Dividing left hand side numerator and denominator by x2{x^2}, we have,
dydx=(yx)2(yx)1\dfrac{{dy}}{{dx}} = \dfrac{{{{(\dfrac{y}{x})}^2}}}{{(\dfrac{y}{x}) - 1}}
Hence, the expression shows that the 1st order differential equation does not depend on xx and yy but only in the form of xy\dfrac{x}{y} or yx\dfrac{y}{x}. So, it is homogeneous.
Now, we are going to solve the equation so, assume that
yx=v\dfrac{y}{x} = v so,
y=vxy = vx
Now, differentiating both sides with respect todxdx , we have

dydx=vdxdx+xdvdxequation(1) dydx=v+xdvdx dydx=(yx)2(yx)1 dydx=v2v1equation(2)  \because \dfrac{{dy}}{{dx}} = v\dfrac{{dx}}{{dx}} + x\dfrac{{dv}}{{dx}} \to equation(1) \\\ \Rightarrow \dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}} \\\ \because \dfrac{{dy}}{{dx}} = \dfrac{{{{(\dfrac{y}{x})}^2}}}{{(\dfrac{y}{x}) - 1}} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{v^2}}}{{v - 1}} \to equation(2) \\\

Now, putting the value of equation (2) in equation (1)

xdvdx=v2v1v xdvdx=v2v2+vv1 dvdx=vv1×1x v1vdv=dxx (11v)dv=logx vlogv=logx+c vlogv+x+c=0  \Rightarrow x\dfrac{{dv}}{{dx}} = \dfrac{{{v^2}}}{{v - 1}} - v \\\ \Rightarrow x\dfrac{{dv}}{{dx}} = \dfrac{{{v^2} - {v^2} + v}}{{v - 1}} \\\ \Rightarrow \dfrac{{dv}}{{dx}} = \dfrac{v}{{v - 1}} \times \dfrac{1}{x} \\\ \Rightarrow \smallint \tfrac{{v - 1}}{v}dv = \smallint \tfrac{{dx}}{x} \\\ \Rightarrow \smallint (1 - \tfrac{1}{v})dv = \log \left| x \right| \\\ \Rightarrow v - \log \left| v \right| = \log \left| x \right| + c \\\ \Rightarrow v - \log \left| {v + x} \right| + c = 0 \\\

Now, putting the value of v , [y=vx]v=yx[\because y = vx] \Rightarrow v = \dfrac{y}{x}
yxlogyx+x+c=0\therefore \dfrac{y}{x} - \log \left| {\dfrac{y}{x} + x} \right| + c = 0

Note:
In this question, first check if the equation is homogeneous or not. If yes then go ahead, if not then first homogenize the equation and then solve. Be careful while putting the value of v when the equation is solved