Solveeit Logo

Question

Question: Show that the differential equation \(2y{{e}^{\dfrac{x}{y}}}dx+\left( y-2x{{e}^{\dfrac{x}{y}}} \righ...

Show that the differential equation 2yexydx+(y2xexy)dy=02y{{e}^{\dfrac{x}{y}}}dx+\left( y-2x{{e}^{\dfrac{x}{y}}} \right)dy=0 is homogeneous. Find the particular solution of this differential equation, given that x = 0, when y = 1.

Explanation

Solution

Hint: Condition for any differential equation F(x, 4) to be homogeneous or not is given as
F(λx,λy)=λnF(x,y)F\left( \lambda x,\lambda y \right)={{\lambda }^{n}}F\left( x,y \right)
Substitute y = vx or v = xy to solve the given differential equation. Put values of (x, y) as (0, 1) to get the particular solution.

Complete step-by-step answer:
Here, given differential equation is
2yexydx+(y2xexy)dy=02y{{e}^{\dfrac{x}{y}}}dx+\left( y-2x{{e}^{\dfrac{x}{y}}} \right)dy=0 …………….. (i)
Now, we need to prove this equation as a homogeneous and have to get a particular solution at x = 0 and y = 1.
We know that any differential equation will be a homogeneous one if it satisfies the condition:
F(λx,λy)=λnF(x,y)F\left( \lambda x,\lambda y \right)={{\lambda }^{n}}F\left( x,y \right) ……………….. (ii)
Where n is any integer.
Now, we have F(x, y) from equation (i) as
F(x,y)=2yexydx+(y2xexy)dy=0F\left( x,y \right)=2y{{e}^{\dfrac{x}{y}}}dx+\left( y-2x{{e}^{\dfrac{x}{y}}} \right)dy=0
And henceF(λx,λy)F\left( \lambda x,\lambda y \right)can be calculated by putting x=λxx=\lambda x and y=λyy=\lambda yin the above equation. Hence, we get
F(λx,λy)=2λye(λxλy)dx+(λy2λxeλxλy)dyF\left( \lambda x,\lambda y \right)=2\lambda y{{e}^{\left( \dfrac{\lambda x}{\lambda y} \right)}}dx+\left( \lambda y-2\lambda x{{e}^{\dfrac{\lambda x}{\lambda y}}} \right)dy
On simplifying the above equation, we get
F(λx,λy)=λ[2yexydx+(y2xexy)dy] F(λx,λy)=λ1F(x,y) \begin{aligned} & F\left( \lambda x,\lambda y \right)=\lambda \left[ 2y{{e}^{\dfrac{x}{y}}}dx+\left( y-2x{{e}^{\dfrac{x}{y}}} \right)dy \right] \\\ & \Rightarrow F\left( \lambda x,\lambda y \right)={{\lambda }^{1}}F\left( x,y \right) \\\ \end{aligned}
Hence, we observe that the above relation is following the condition expressed in equation (ii), hence, we get to know that the given differential equation is a homogenous one. Now, let us solve the given differential equation in the following way.
Equation (i) can be divided by ‘dx’, So, we get
2yexydx+(y2xexy)dydx=0 2yexy+(y2xexy)dydx=0 dydx=2ye(xy)y2xe(xy)..........(iii) \begin{aligned} & \dfrac{2y{{e}^{\dfrac{x}{y}}}dx+\left( y-2x{{e}^{\dfrac{x}{y}}} \right)dy}{dx}=0 \\\ & \Rightarrow 2y{{e}^{\dfrac{x}{y}}}+\left( y-2x{{e}^{\dfrac{x}{y}}} \right)\dfrac{dy}{dx}=0 \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{-2y{{e}^{\left( \dfrac{x}{y} \right)}}}{y-2x{{e}^{\left( \dfrac{x}{y} \right)}}}..........(iii) \\\ \end{aligned}
Now, put y = vx in the equation (iii), since, y = vx
Now, differentiate it with respect to ‘x’ o get the value of dydx\dfrac{dy}{dx}. Hence, we get
dydx=vdxdx+xdvdx\dfrac{dy}{dx}=v\dfrac{dx}{dx}+x\dfrac{dv}{dx}
Where, we have applied relationship:
dydx(u.v)=udvdx+vdudx\dfrac{dy}{dx}\left( u.v \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx} where u and v are general functions in multiplication.
Hence, we get
dydx=v+xdudx\dfrac{dy}{dx}=v+x\dfrac{du}{dx}……………… (iv)
Now, put y =vx in equation (iii) and replace dydx\dfrac{dy}{dx}by v+xdudxv+x\dfrac{du}{dx}
Hence, we get
v+xdudx=2vxexvxvx2xexvx v+xdudx=2ve1vv2e1v xdudx=2ve1vv2e1vv1 xdudx=2ve1vv2+2ve1vv2e1v xdudx=v2v2e1v \begin{aligned} & v+x\dfrac{du}{dx}=\dfrac{-2vx{{e}^{\dfrac{x}{vx}}}}{vx-2x{{e}^{\dfrac{x}{vx}}}} \\\ & \Rightarrow v+x\dfrac{du}{dx}=\dfrac{-2v{{e}^{\dfrac{1}{v}}}}{v-2{{e}^{\dfrac{1}{v}}}} \\\ & \Rightarrow x\dfrac{du}{dx}=\dfrac{-2v{{e}^{\dfrac{1}{v}}}}{v-2{{e}^{\dfrac{1}{v}}}}-\dfrac{v}{1} \\\ & \Rightarrow x\dfrac{du}{dx}=\dfrac{-2v{{e}^{\dfrac{1}{v}}}-{{v}^{2}}+2v{{e}^{\dfrac{1}{v}}}}{v-2{{e}^{\dfrac{1}{v}}}} \\\ & \Rightarrow x\dfrac{du}{dx}=\dfrac{-{{v}^{2}}}{v-2{{e}^{\dfrac{1}{v}}}} \\\ \end{aligned}
Now, we can separate the variables ‘v’ and ‘x’ as
v2e1vv2dv=dxx\dfrac{v-2{{e}^{\dfrac{1}{v}}}}{{{v}^{2}}}dv=-\dfrac{dx}{x}
Now, integrate both the sides to get a solution of the differential equation.
Hence, we get
v2e1vv2dv=1xdx\int{\dfrac{v-2{{e}^{\dfrac{1}{v}}}}{{{v}^{2}}}dv=-\int{\dfrac{1}{x}dx}} ……………. (v)
Let I1=v2e1vv2dv{{I}_{1}}=\int{\dfrac{v-2{{e}^{\dfrac{1}{v}}}}{{{v}^{2}}}dv}and I2=1xdx{{I}_{2}}=-\int{\dfrac{1}{x}dx}
Let us solve I1{{I}_{1}} and I2{{I}_{2}} to get equation (v).
Hence, I1{{I}_{1}} can be written as
I1=1vdv2e1vv2dv  \begin{aligned} & {{I}_{1}}=\int{\dfrac{1}{v}dv}-\int{\dfrac{2{{e}^{\dfrac{1}{v}}}}{{{v}^{2}}}}dv \\\ & \\\ \end{aligned}
Now, we know
1xdx=logex\int{\dfrac{1}{x}dx}={{\log }_{e}}x

Hence, I1{{I}_{1}}can be given as
I1=logev2e1vv2dv{{I}_{1}}={{\log }_{e}}v-2\int{\dfrac{{{e}^{\dfrac{1}{v}}}}{{{v}^{2}}}dv} …………………… (vi)
Suppose
1v=t\dfrac{1}{v}=t for second integral
Now, differentiate it with respect to ‘t’.
We know ddxxn=nxn1\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}
Hence,
ddt(v1)=ddt(t) 1v2dvdt=1 1v2dv=dt \begin{aligned} & \dfrac{d}{dt}\left( {{v}^{-1}} \right)=\dfrac{d}{dt}\left( t \right) \\\ & \Rightarrow \dfrac{-1}{{{v}^{2}}}\dfrac{dv}{dt}=1 \\\ & \Rightarrow \dfrac{1}{{{v}^{2}}}dv=-dt \\\ \end{aligned}
Now, replace 1v\dfrac{1}{v} by t and 1v2dv\dfrac{1}{{{v}^{2}}}dv by ‘-dt’ in equation (vi) for the integral part only.
I1=logev2(et)dt I1=logev+2etdt \begin{aligned} & {{I}_{1}}={{\log }_{e}}v-2\int{\left( -{{e}^{t}} \right)dt} \\\ & \Rightarrow {{I}_{1}}={{\log }_{e}}v+2\int{{{e}^{t}}dt} \\\ \end{aligned}
We know exdx=ex\int{{{e}^{x}}dx}={{e}^{x}}. Hence,
I1=logev+2et+C1{{I}_{1}}={{\log }_{e}}v+2{{e}^{t}}+{{C}_{1}} where C1{{C}_{1}} is a constant.
Put t=1vt=\dfrac{1}{v} . hence, we get
I1=logev+2e1v+C1{{I}_{1}}={{\log }_{e}}v+2{{e}^{\dfrac{1}{v}}}+{{C}_{1}}…………… (vii)
Now, we can get value of I2{{I}_{2}} by using relation 1xdx=logex\int{\dfrac{1}{x}dx}={{\log }_{e}}x
Hence, we get
I2=1xdx=logex+C2{{I}_{2}}=\int{\dfrac{1}{x}dx}={{\log }_{e}}x+{{C}_{2}}………….. (viii)
Where C2{{C}_{2}} is a constant.
Now put values of I1{{I}_{1}} and I2{{I}_{2}}from equations (vii) and (viii), we get
logev+2e1v+C1=logex+C2{{\log }_{e}}v+2{{e}^{\dfrac{1}{v}}}+{{C}_{1}}=-{{\log }_{e}}x+{{C}_{2}}
As we supposed y = vx, hence the value of v can be given as v=yxv=\dfrac{y}{x}.
Hence, we get the above equation as
loge(yx)+2e(xy)=logex+(c2c1){{\log }_{e}}\left( \dfrac{y}{x} \right)+2{{e}^{\left( \dfrac{x}{y} \right)}}=-{{\log }_{e}}x+\left( {{c}_{2}}-{{c}_{1}} \right)
Now replace c2c1=c{{c}_{2}}-{{c}_{1}}=c.
Hence, general solution of given differentiable be
loge(yx)+2e(xy)=logex+C loge(yx)+logex+2e(xy)=C (ix) \begin{aligned} & {{\log }_{e}}\left( \dfrac{y}{x} \right)+2{{e}^{\left( \dfrac{x}{y} \right)}}=-{{\log }_{e}}x+C \\\ & \Rightarrow {{\log }_{e}}\left( \dfrac{y}{x} \right)+{{\log }_{e}}x+2{{e}^{\left( \dfrac{x}{y} \right)}}=C\ldots \ldots \ldots \ldots \ldots \text{ }\left( ix \right) \\\ \end{aligned}
Now, use logarithm identity given as logca+logcb=logcab{{\log }_{c}}a+{{\log }_{c}}b={{\log }_{c}}ab . Hence, we get
loge(yx×x)+2e(xy)=C logey+2exy=C...........(x) \begin{aligned} & {{\log }_{e}}\left( \dfrac{y}{x}\times x \right)+2{{e}^{\left( \dfrac{x}{y} \right)}}=C \\\ & \Rightarrow {{\log }_{e}}y+2{{e}^{\dfrac{x}{y}}}=C...........(x) \\\ \end{aligned}
Now, put x = 0 and y = 1 in the above equation to get a particular solution. Hence by putting values of ‘x’ and ‘y’, we get
loge(1)+2e01=C{{\log }_{e}}\left( 1 \right)+2{{e}^{\dfrac{0}{1}}}=C
Value of loge1=0{{\log }_{e}}1=0 and eo=1{{e}^{o}}=1, hence, we get
0 + 2 = C
Or C = 2
Hence, particular solution can be given from equation (x) by putting C = 2, we get
logey+2e(xy)=2{{\log }_{e}}y+2{{e}^{\left( \dfrac{x}{y} \right)}}=2

Note: One can use x = vy to solve the given homogeneous equation and replace dxdy\dfrac{dx}{dy} by v+ydvdyv+y\dfrac{dv}{dy} to get the solution.
One may not able to put x = 0 and y = 1 in equation loge(yx)+logex+2e(xy)=C{{\log }_{e}}\left( \dfrac{y}{x} \right)+{{\log }_{e}}x+2{{e}^{\left( \dfrac{x}{y} \right)}}=C as loge(yx){{\log }_{e}}\left( \dfrac{y}{x} \right) and loge(x){{\log }_{e}}\left( x \right)will not accept x = 0. So, first simplify the equation to get the equation logey+2exy=C{{\log }_{e}}y+2{{e}^{\dfrac{x}{y}}}=C, then try to put x = 1 and y = 1 in it.
Calculation is the important part of the question as well, so take care with the calculating part as well.