Solveeit Logo

Question

Question: Show that the coefficient of \({{x}^{n}}\) in the expansion of \(\dfrac{x}{{{\left( 1-x \right)}^{2}...

Show that the coefficient of xn{{x}^{n}} in the expansion of x(1x)2cx\dfrac{x}{{{\left( 1-x \right)}^{2}}-cx} is n\left\\{ 1+\dfrac{{{n}^{2}}-1}{\left| \\!{\underline {\, 3 \,}} \right. }c+\dfrac{\left( {{n}^{2}}-1 \right)\left( {{n}^{2}}-4 \right)}{\left| \\!{\underline {\, 5 \,}} \right. }{{c}^{2}}+\dfrac{\left( {{n}^{2}}-1 \right)\left( {{n}^{2}}-4 \right)\left( {{n}^{2}}-9 \right)}{\left| \\!{\underline {\, 7 \,}} \right. }{{c}^{3}}+........ \right\\}

Explanation

Solution

We can solve this question by using some of basic formula of infinite GP that is
11x=1+x+x2+x3+......\dfrac{1}{1-x}=1+x+{{x}^{2}}+{{x}^{3}}+...... where 1x1-1\le x\le 1 and another series (1x)n=1+nx+n(n+1)!2x2+n(n+1)(n+2)!3......{{\left( 1-x \right)}^{-n}}=1+nx+\dfrac{n\left( n+1 \right)}{\left| \\!{\underline {\, 2 \,}} \right. }{{x}^{2}}+\dfrac{n\left( n+1 \right)\left( n+2 \right)}{\left| \\!{\underline {\, 3 \,}} \right. }...... where 1x1-1\le x\le 1 we can write
(1x)n=1+r=0(n+r)Cr+1xr+1{{\left( 1-x \right)}^{-n}}=1+\sum\limits_{r=0}^{\infty }{(n+r){{C}_{r+1}}}{{x}^{r+1}} . Coefficient of xr{{x}^{r}} in (1x)n{{\left( 1-x \right)}^{-n}} is (n+r1)Cr\left( n+r-1 \right){{C}_{r}} .

Complete step by step answer:
The coefficient of xn{{x}^{n}} in the series x(1x)2cx\dfrac{x}{{{\left( 1-x \right)}^{2}}-cx} is equal to coefficient of xn1{{x}^{n-1}} in the series 1(1x)2cx\dfrac{1}{{{\left( 1-x \right)}^{2}}-cx}
Taking (1x2)\left( 1-{{x}^{2}} \right) common in the denominator we get
1(1x)2cx=1(1x)2[11cx(1x)2]\Rightarrow \dfrac{1}{{{\left( 1-x \right)}^{2}}-cx}=\dfrac{1}{{{\left( 1-x \right)}^{2}}}\left[ \dfrac{1}{1-\dfrac{cx}{{{\left( 1-x \right)}^{2}}}} \right]
Let’ expand the term 11(cx(1x)2)\dfrac{1}{1-\left( \dfrac{cx}{{{\left( 1-x \right)}^{2}}} \right)}
We can assume the cx(1x)2\dfrac{cx}{{{\left( 1-x \right)}^{2}}} as y then it will be 11y\dfrac{1}{1-y} then we can expand the term.

11(cx(1x)2)=1+cx(1x)2+(cx(1x)2)2+(cx(1x)2)3+......\dfrac{1}{1-\left( \dfrac{cx}{{{\left( 1-x \right)}^{2}}} \right)}=1+\dfrac{cx}{{{\left( 1-x \right)}^{2}}}+{{\left( \dfrac{cx}{{{\left( 1-x \right)}^{2}}} \right)}^{2}}+{{\left( \dfrac{cx}{{{\left( 1-x \right)}^{2}}} \right)}^{3}}+...... 1cx(1x)21-1\le \dfrac{cx}{{{\left( 1-x \right)}^{2}}}\le 1

11(cx(1x)2)=1+cx(1x)2+c2x2(1x)4+c3x3(1x)6+.....\Rightarrow \dfrac{1}{1-\left( \dfrac{cx}{{{\left( 1-x \right)}^{2}}} \right)}=1+\dfrac{cx}{{{\left( 1-x \right)}^{2}}}+\dfrac{{{c}^{2}}{{x}^{2}}}{{{\left( 1-x \right)}^{4}}}+\dfrac{{{c}^{3}}{{x}^{3}}}{{{\left( 1-x \right)}^{6}}}+..... 1cx(1x)21-1\le \dfrac{cx}{{{\left( 1-x \right)}^{2}}}\le 1
Now we can write
1(1x)2cx=1(1x)2(1+cx(1x)2+c2x2(1x)4+c3x3(1x)6+.....)\dfrac{1}{{{\left( 1-x \right)}^{2}}-cx}=\dfrac{1}{{{\left( 1-x \right)}^{2}}}\left( 1+\dfrac{cx}{{{\left( 1-x \right)}^{2}}}+\dfrac{{{c}^{2}}{{x}^{2}}}{{{\left( 1-x \right)}^{4}}}+\dfrac{{{c}^{3}}{{x}^{3}}}{{{\left( 1-x \right)}^{6}}}+..... \right)
1(1x)2cx=(1(1x)2+cx(1x)4+c2x2(1x)6+c3x3(1x)8+.....)\dfrac{1}{{{\left( 1-x \right)}^{2}}-cx}=\left( \dfrac{1}{{{\left( 1-x \right)}^{2}}}+\dfrac{cx}{{{\left( 1-x \right)}^{4}}}+\dfrac{{{c}^{2}}{{x}^{2}}}{{{\left( 1-x \right)}^{6}}}+\dfrac{{{c}^{3}}{{x}^{3}}}{{{\left( 1-x \right)}^{8}}}+..... \right)
So the coefficient of xn1{{x}^{n-1}} in 1(1x)2cx\dfrac{1}{{{\left( 1-x \right)}^{2}}-cx} is equal to coefficient of xn1{{x}^{n-1}} in (1(1x)2+cx(1x)4+c2x2(1x)6+c3x3(1x)8+.....)\left( \dfrac{1}{{{\left( 1-x \right)}^{2}}}+\dfrac{cx}{{{\left( 1-x \right)}^{4}}}+\dfrac{{{c}^{2}}{{x}^{2}}}{{{\left( 1-x \right)}^{6}}}+\dfrac{{{c}^{3}}{{x}^{3}}}{{{\left( 1-x \right)}^{8}}}+..... \right) = coefficient of xn1{{x}^{n-1}} in r=0crxr(1x)2r+2\sum\limits_{r=0}^{\infty }{\dfrac{{{c}^{r}}{{x}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}}
=coefficient of xn1r{{x}^{n-1-r}} in r=0cr(1x)2r+2\sum\limits_{r=0}^{\infty }{\dfrac{{{c}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}}
We know that coefficient of xp{{x}^{p}} in (1x)m{{\left( 1-x \right)}^{-m}} is (m+p1)Cp\left( m+p-1 \right){{C}_{p}} or (m+p1)Cm1\left( m+p-1 \right){{C}_{m-1}}
Here p is n1rn-1-r and m is 2r+22r+2
Coefficient of xn1r{{x}^{n-1-r}} in r=0cr(1x)2r+2\sum\limits_{r=0}^{\infty }{\dfrac{{{c}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}}=r=0\sum\limits_{r=0}^{\infty }{{}} (coefficient of xn1r{{x}^{n-1-r}} in cr(1x)2r+2\dfrac{{{c}^{r}}}{{{\left( 1-x \right)}^{2r+2}}} )

\Rightarrow Coefficient of xn1r{{x}^{n-1-r}} in r=0cr(1x)2r+2\sum\limits_{r=0}^{\infty }{\dfrac{{{c}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}} = r=0\sum\limits_{r=0}^{\infty }{{}} cr×(n1r+2r+21)C2r+21{{c}^{r}}\times \left( n-1-r+2r+2-1 \right){{C}_{2r+2-1}}
\Rightarrow Coefficient of xn1r{{x}^{n-1-r}} in r=0cr(1x)2r+2\sum\limits_{r=0}^{\infty }{\dfrac{{{c}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}} = r=0(n+r)C2r+1×cr\sum\limits_{r=0}^{\infty }{\left( n+r \right){{C}_{2r+1}}\times {{c}^{r}}}
r=0(n+r)C2r+1×cr=r=0(n+r)×(n+r1)×.........(n(r1))×(nr)×cr2\Rightarrow \sum\limits_{r=0}^{\infty }{\left( n+r \right){{C}_{2r+1}}\times {{c}^{r}}}=\sum\limits_{r=0}^{\infty }{\dfrac{\left( n+r \right)\times \left( n+r-1 \right)\times .........\left( n-(r-1) \right)\times \left( n-r \right)\times {{c}^{r}}}{2}}
We can see there is (n+r)×(nr)\left( n+r \right)\times \left( n-r \right) , (n+r1)×(n(r1))\left( n+r-1 \right)\times \left( n-(r-1) \right) ,……..till (n+1)×(n1)\left( n+1 \right)\times \left( n-1 \right) and n is left out. We know that (a+b)(ab)=a2b2\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}} so taking n common and multiply these terms we get
r=0(n+r)×(n+r1)×.........(n(r1))×(nr)cr!2r+1=n×r=0(n2r2)(n2(r1)2).........(n222)(n212)cr!2r+1\Rightarrow \sum\limits_{r=0}^{\infty }{\dfrac{\left( n+r \right)\times \left( n+r-1 \right)\times .........\left( n-(r-1) \right)\times \left( n-r \right){{c}^{r}}}{\left| \\!{\underline {\, 2r+1 \,}} \right. }}=n\times \sum\limits_{r=0}^{\infty }{\dfrac{\left( {{n}^{2}}-{{r}^{2}} \right)\left( {{n}^{2}}-{{(r-1)}^{2}} \right).........\left( {{n}^{2}}-{{2}^{2}} \right)\left( {{n}^{2}}-{{1}^{2}} \right){{c}^{r}}}{\left| \\!{\underline {\, 2r+1 \,}} \right. }}
So expanding the term we get n\left\\{ 1+\dfrac{{{n}^{2}}-1}{\left| \\!{\underline {\, 3 \,}} \right. }c+\dfrac{\left( {{n}^{2}}-1 \right)\left( {{n}^{2}}-4 \right)}{\left| \\!{\underline {\, 5 \,}} \right. }{{c}^{2}}+\dfrac{\left( {{n}^{2}}-1 \right)\left( {{n}^{2}}-4 \right)\left( {{n}^{2}}-9 \right)}{\left| \\!{\underline {\, 7 \,}} \right. }{{c}^{3}}+........ \right\\}.
Now we can see from the above proof that the coefficient of
xn{{x}^{n}} in the expansion of x(1x)2cx\dfrac{x}{{{\left( 1-x \right)}^{2}}-cx} is n\left\\{ 1+\dfrac{{{n}^{2}}-1}{\left| \\!{\underline {\, 3 \,}} \right. }c+\dfrac{\left( {{n}^{2}}-1 \right)\left( {{n}^{2}}-4 \right)}{\left| \\!{\underline {\, 5 \,}} \right. }{{c}^{2}}+\dfrac{\left( {{n}^{2}}-1 \right)\left( {{n}^{2}}-4 \right)\left( {{n}^{2}}-9 \right)}{\left| \\!{\underline {\, 7 \,}} \right. }{{c}^{3}}+........ \right\\}

Keep in mind that all the expansion of series is valid when
1x1-1\le x\le 1
1cx(1x)21-1\le \dfrac{cx}{{{\left( 1-x \right)}^{2}}}\le 1

Note: Always keep in mind that coefficient of xn{{x}^{n}} in in a series which is in the form xr×S{{x}^{r}}\times S where S is a series will be equal to coefficient of xnr{{x}^{n-r}} in S. we have seen this in the above question. Some infinite series will be valid only in a specific range of x. So try to mention the range while solving.