Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius rr is 4r3\frac{4r}{3}

Answer

The correct answer is 4r3.\frac{4r}{3}.
A sphere of fixed radius (r)(r) is given.
Let RR and hh be the radius and the height of the cone respectively.
Sphere
The volume (V)(V) of the cone is given by,
V=13πR2hV=\frac{1}{3}πR^2h
Now, from the right triangle BCD, we have:
BC=r2R2BC=\sqrt{r^2-R^2}
h=r+r2R2∴h=r+\sqrt{r^2-R^2}
∴V=\frac{1}{3}πR^2(r+\sqrt{r^2-R^2})$$=\frac{1}{3}πR^2r+\frac{1}{3}πR^2\sqrt{r^2-R^2}
dVdR=23πRr+2π3πRr2R2+R23.(2R)2r2R2∴\frac{dV}{dR}=\frac{2}{3}πRr+\frac{2π}{3}πR\sqrt{r^2-R^2}+\frac{R^2}{3}.\frac{(-2R)}{2\sqrt{r^2-R^2}}
=23πRr+2π3πRr2R2R33r2R2=\frac{2}{3}πRr+\frac{2π}{3πR}\sqrt{r^2-R^2}-\frac{R^3}{3\sqrt{r^2-R^2}}
=23πRr+2πR(r2R2)πR33r2R2=\frac{2}{3}πRr+\frac{2πR(r^2-R^2)-\pi R^3}{3\sqrt{r^2-R^2}}
=23πRr+2πRr23πR33r2R2=\frac{2}{3}πRr+\frac{2πRr^2-3\pi R^3}{3\sqrt{r^2-R^2}}
Now,dVdR2=0\frac{dV}{dR^2}=0
2πrR3=3πR32πRr33r2R2⇒\frac{2πrR}{3}=\frac{3πR^3-2πRr^3}{3\sqrt{r^2-R^2}}
2rr2R2=3R22r2⇒2r\sqrt{r^2-R^2}=3R^2-2r^2
4r2(r2R2)=3R22r2⇒4r^2(r^2-R^2)=3R^2-2r^2
=4r44r2R2=9R4+4r412R2r2=4r^4-4r^2R^2=9R^4+4r^4-12R^2r^2
9R48r2R2=0⇒9R^4-8r^2R^2=0
9R2=8r2⇒9R^2=8r^2
R2=8r29⇒R^2=\frac{8r^2}{9}
Now,d2VdR2=2πr3+3r2R2(2πr29πR2)(2πRr23πR3)(6R)12r2R29(r2R2)\frac{d^2V}{dR^2}=\frac{2πr}{3}+\frac{3\sqrt{r^2-R^2}(2πr^2-9πR^2)-(2πRr^2-3πR^3)(-6R)\frac{1}{2\sqrt{r^2-R^2}}}{9(r^2-R^2)}
=2πr3+3r2R2(2πr29πR2)(2πRr23πR3)(3R)12r2R29(r2R2)=\frac{2πr}{3}+\frac{3\sqrt{r^2-R^2}(2πr^2-9πR^2)-(2πRr^2-3πR^3)(3R)\frac{1}{2\sqrt{r^2-R^2}}}{9(r^2-R^2)}
Now when R2=8r29R^2=\frac{8r^2}{9},it can be shown that d2VdR2<0.\frac{d^2V}{dR^2}<0.
∴ The volume is the maximum when R2=8r29.R^2=\frac{8r^2}{9}.
When R2=8r29.R^2=\frac{8r^2}{9}.,height of the cone =r+r28r29=r+\sqrt{r^2-\frac{8r^2}{9}}
=r+r29=r+r3=4r3.=r+\sqrt{\frac{r^2}{9}}=r+\frac{r}{3}=\frac{4r}{3}.
Hence, it can be seen that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius rr is 4r3.\frac{4r}{3}.