Solveeit Logo

Question

Question: Show that \(\tan \left( \dfrac 12 \sin ^{-1} \dfrac 34 \right) = \dfrac {4-\sqrt{7}}3\) ....

Show that tan(12sin134)=473\tan \left( \dfrac 12 \sin ^{-1} \dfrac 34 \right) = \dfrac {4-\sqrt{7}}3 .

Explanation

Solution

Use the double angle identity of the tangent, tan2θ=2tanθ1tan2θ\tan 2 \theta = \dfrac {2 \tan \theta}{1-\tan ^2 \theta} to eliminate the troublesome factor of 12\dfrac12 from the argument θ=12sin134\theta = \dfrac 12\sin ^{-1} \dfrac 34 of the tangent. Then by using the properties of the inverse trigonometric functions, rewrite sin134\sin^{-1} \dfrac 34 in terms of other inverse trigonometric functions to absorb the corresponding functions (for instance: tan(tan1θ)=θ\tan \left( \tan ^{-1} \theta \right) = \theta ).

Complete step by step answer:
First of all, we use the well-known double angle identity: tan2θ=2a1a2\tan 2 \theta = \dfrac {2a}{1-a^2} where a=tanθ(±1)a=\tan \theta \left( \ne \pm 1 \right) .
We’ll use this relationship to rewrite this in terms of aa . Multiply both sides by (1a2)\left(1-a^2\right) .
(1a2)tan2θ=2a    tan2θa2+2atan2θ=0\left(1-a^2\right)\tan 2 \theta = 2a \implies \tan 2 \theta \cdot a^2 +2 a - \tan 2 \theta =0
Now, we divide both sides by tan2θ\tan 2 \theta (if 0\neq 0 ) and use the quadratic formula to solve for aa .
a2+2acot2θ1=0a=2cot2θ±4cot22θ+42{{a}^{2}}+2a\cot 2\theta -1=0\Rightarrow a=\dfrac{-2\cot 2\theta \pm \sqrt{4{{\cot }^{2}}2\theta +4}}{2}
By using the identity cot22θ+1=csc22θ{{\cot }^{2}}2\theta +1={{\csc }^{2}}2\theta , we can simplify this to obtain:
a=tanθ=cot2θ±csc2θa=\tan \theta =-\cot 2\theta \pm \csc 2\theta
For the moment, we consider the equation: tanθ=csc2θcot2θ\tan \theta = \csc 2 \theta - \cot 2 \theta (both the solutions are valid).
Now, we substitute θ=12sin134\theta = \dfrac 12 \sin ^{-1} \dfrac 34 in the above equation.
tan(12sin134)=csc(sin134)cot(sin134)\tan \left( \dfrac 12 \sin ^{-1} \dfrac 34 \right) = \csc \left( \sin ^{-1} \dfrac 34 \right) - \cot \left( \sin ^{-1} \dfrac 34 \right)
For simplicity, we assume that
tan(12sin134)=cscxcoty\tan \left( \dfrac 12 \sin ^{-1} \dfrac 34 \right)=\csc x - \cot y
We note that if x=sin134sinx=34x={{\sin }^{-1}}\dfrac{3}{4}\Rightarrow \sin x=\dfrac{3}{4} then cscx=43x=csc143\csc x=\dfrac{4}{3}\Rightarrow x={{\csc }^{-1}}\dfrac{4}{3} .
Moreover, if y=sin134siny=34y={{\sin }^{-1}}\dfrac{3}{4}\Rightarrow \sin y=\dfrac{3}{4} then cosy=1(34)2=74\cos y = \sqrt {1-\left(\dfrac34\right)^2}=\dfrac{\sqrt 7}4 (we may ignore the negative solution if we assume that yy lies in the first quadrant).
Hence, coty=cosysiny=73\cot y=\dfrac{\cos y}{\sin y}=\dfrac {\sqrt 7}3 so that y=cot173y={{\cot }^{-1}}\dfrac{\sqrt{7}}{3} .
In the end, we substitute the values x=csc143, y=cot173x={{\csc }^{-1}}\dfrac{4}{3},\ y={{\cot }^{-1}}\dfrac{\sqrt{7}}{3} in the above equation and use the well-known properties of the trigonometric functions to complete the proof.
tan1(12sin134)=csc(csc143)cot(cot173)\tan ^{-1} \left( \dfrac 12 \sin ^{-1} \dfrac 34 \right) = \csc \left( \csc ^{-1} \dfrac 43 \right) - \cot \left( \cot^{-1} \dfrac {\sqrt 7}3 \right)
tan(12sin134)=4373\tan \left( \dfrac{1}{2}{{\sin }^{-1}}\dfrac{3}{4} \right)=\dfrac{4}{3}-\dfrac{\sqrt{7}}{3}
Hence, we have shown that tan(12sin134)=473\tan \left( \dfrac{1}{2}{{\sin }^{-1}}\dfrac{3}{4} \right)=\dfrac{4-\sqrt{7}}{3}
Note: We need to ensure that equations with ±\pm signs are correctly chosen at each step. For instance, if we choose the equation tanθ=csc2θcot2θ\tan \theta=-\csc 2 \theta - \cot 2 \theta instead of tanθ=csc2θcot2θ\tan \theta=\csc 2 \theta - \cot 2 \theta and continue with the solution, we’ll not be able to derive the result quoted in question (though the other result would also be correct because the original equation a2+2acot2θ1=0{{a}^{2}}+2a\cot 2\theta -1=0 has two solutions). One way to identify the equation we need to choose is to observe that the result 473\dfrac {4-\sqrt{7}}3 has one positive term and one negative term added together. This is similar to the equation tanθ=csc2θcot2θ\tan \theta = \csc 2 \theta - \cot 2 \theta where one positive and one negative term are added on the right side (it is always reasonable to assume that an argument i.e. 2θ2\theta here lies in the first quadrant as the first choice, however, if we don’t get the correct result then the argument might not lie in the first quadrant and we’ll use the other equation).