Solveeit Logo

Question

Question: Show that \[\tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{...

Show that tan(12sin134)=473\tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{3} and justify why the other value 4+73\dfrac{{4 + \sqrt 7 }}{3} is ignored?

Explanation

Solution

Here, in the question, we have been given an equation and asked to prove that the left hand side of this equation is equal to the right hand side of the equation. While we will go through the solution we will get two values and one of them would be ignored, so we have to state the reason. We will start taking LHS and then simplify it using applicable identities and reach the RHS.
Formulae used:
The roots of the Quadratic equation ax2+bx+c=0a{x^2} + bx + c = 0 is x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}
sin2A=2tanA1+tan2A\sin 2A = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}

Complete step-by-step solution:
We have to prove tan(12sin134)=473\tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{3}
Firstly, Let’s assume 12sin134=θ\dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} = \theta
sin134=2θ\Rightarrow {\sin ^{ - 1}}\dfrac{3}{4} = 2\theta
Taking sin\sin both sides, we get,
sin(sin134)=sin2θ\sin \left( {{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \sin 2\theta
Using the property sin(sin1θ)=θ\sin \left( {{{\sin }^{ - 1}}\theta } \right) = \theta , we get,
34=sin2θ\dfrac{3}{4} = \sin 2\theta
Now, using the identitysin2A=2tanA1+tan2A\sin 2A = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}, we get,
2tanθ1+tan2θ=34\dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} = \dfrac{3}{4}
Solving it further, we get

8\tan \theta = 3 + 3{\tan ^2}\theta \\\ \Rightarrow 3{\tan ^2}\theta - 8\tan \theta + 3 = 0 $$ Now, let’s assume $$\tan \theta = z$$ $$\therefore 3{z^2} - 8z + 3 = 0$$ Using the Discriminant method to solve for the value of $$z$$, we get, $$z = \dfrac{{ - \left( { - 8} \right) \pm \sqrt {{{\left( { - 8} \right)}^2} - 4\left( 3 \right)\left( 3 \right)} }}{{2\left( 3 \right)}}$$ Now, the simplest form of $$z$$ can be calculated as

z = \dfrac{{8 \pm \sqrt {28} }}{6} \\
\Rightarrow z = \dfrac{{4 \pm \sqrt 7 }}{3} Nowputtingbackthevalue Now putting back the value\tan \theta = z,weget, we get \tan \theta = \dfrac{{4 \pm \sqrt 7 }}{3}Now,lookingattherangeof Now, looking at the range of{\sin ^{ - 1}}x,weobtain,, we obtain, - \dfrac{\pi }{2} \leqslant {\sin ^{ - 1}}\dfrac{3}{4} \leqslant \dfrac{\pi }{2}Dividingthisequationby2,weget Dividing this equation by 2, we get - \dfrac{\pi }{4} \leqslant \dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} \leqslant \dfrac{\pi }{4}Now,Puttingthevalueof Now, Putting the value of\dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} = \theta ,weget, we get - \dfrac{\pi }{4} \leqslant \theta \leqslant \dfrac{\pi }{4}Taking Taking\tan $$in this equation

\Rightarrow - 1 \leqslant \tan \theta \leqslant 1 $$ We can see that the value of $$\tan \theta $$ must be less than or equal to $$1$$ only. But $$\dfrac{{4 + \sqrt 7 }}{3} > 1$$, Hence, we will ignore this value $$ \Rightarrow \tan \theta = \dfrac{{4 - \sqrt 7 }}{3}$$ Now, putting the values of $$\dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} = \theta $$, we get $$\tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{3}$$ **Hence, we have proved $$\tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{3}$$** **Note:** The symbol $${\sin ^{ - 1}}\theta $$ should not be confused with $${\left( {\sin \theta } \right)^{ - 1}}$$. Infact $${\sin ^{ - 1}}\theta $$ is an angle, the value of whose sine is $$\theta $$, similarly for other trigonometric functions. The smallest numerical value of $$\theta $$, either positive or negative, is known as the Principal Value of the function. The principal value of inverse of sine function must lie between $$\left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]$$.