Question
Question: Show that \[\tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{...
Show that tan(21sin−143)=34−7 and justify why the other value 34+7 is ignored?
Solution
Here, in the question, we have been given an equation and asked to prove that the left hand side of this equation is equal to the right hand side of the equation. While we will go through the solution we will get two values and one of them would be ignored, so we have to state the reason. We will start taking LHS and then simplify it using applicable identities and reach the RHS.
Formulae used:
The roots of the Quadratic equation ax2+bx+c=0 is x=2a−b±b2−4ac
sin2A=1+tan2A2tanA
Complete step-by-step solution:
We have to prove tan(21sin−143)=34−7
Firstly, Let’s assume 21sin−143=θ
⇒sin−143=2θ
Taking sin both sides, we get,
sin(sin−143)=sin2θ
Using the property sin(sin−1θ)=θ, we get,
43=sin2θ
Now, using the identitysin2A=1+tan2A2tanA, we get,
1+tan2θ2tanθ=43
Solving it further, we get
z = \dfrac{{8 \pm \sqrt {28} }}{6} \\
\Rightarrow z = \dfrac{{4 \pm \sqrt 7 }}{3} Nowputtingbackthevalue\tan \theta = z,weget\tan \theta = \dfrac{{4 \pm \sqrt 7 }}{3}Now,lookingattherangeof{\sin ^{ - 1}}x,weobtain, - \dfrac{\pi }{2} \leqslant {\sin ^{ - 1}}\dfrac{3}{4} \leqslant \dfrac{\pi }{2}Dividingthisequationby2,weget - \dfrac{\pi }{4} \leqslant \dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} \leqslant \dfrac{\pi }{4}Now,Puttingthevalueof\dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} = \theta ,weget - \dfrac{\pi }{4} \leqslant \theta \leqslant \dfrac{\pi }{4}Taking\tan $$in this equation