Solveeit Logo

Question

Question: Show that: \(\tan 3x - \tan 2x - \tan x = \tan 3x\tan 2x\tan x\)...

Show that: tan3xtan2xtanx=tan3xtan2xtanx\tan 3x - \tan 2x - \tan x = \tan 3x\tan 2x\tan x

Explanation

Solution

Hint: - Here we go through by letting tan3x\tan 3xas tan(2x+x)\tan (2x + x) . Because in question it is in terms of 2x and x. By applying this we can easily prove our question.

Let us take, tan3x=tan(2x+x)\tan 3x = \tan (2x + x)
Now we can apply the formula of tan(A + B)\tan ({\text{A + B)}} i.e. tan(A + B) = tanA + tanB1tanAtanB\tan ({\text{A + B) = }}\frac{{\tan {\text{A + }}\tan {\text{B}}}}{{1 - \tan {\text{A}}\tan {\text{B}}}}
Now we can write, tan3x=tan(2x+x)=tan2x+tanx1tan2xtanx\tan 3x = \tan (2x + x) = \frac{{\tan 2x + \tan x}}{{1 - \tan 2x\tan x}}
Now we cross multiply it to get,

tan3x(1tan2xtanx)=tan2x+tanx tan3xtan3xtan2xtanx=tan2x+tanx  \Rightarrow \tan 3x(1 - \tan 2x\tan x) = \tan 2x + \tan x \\\ \Rightarrow \tan 3x - \tan 3x\tan 2x\tan x = \tan 2x + \tan x \\\
Now by rearranging the above equation we get
tan3xtan2xtanx=tan3xtan2xtanx\tan 3x - \tan 2x - \tan x = \tan 3x\tan 2x\tan x Hence, proved.

Note: - Whenever we face such a type of question the key concept for solving the question is that we
always try to make the bigger angle in sum of two smaller angles that are given in a question to apply
the formula to prove the question.