Solveeit Logo

Question

Question: show that $[(\sqrt{3}+1)^{2n}]+1$ is divisible by $2^{n+1}$ where n is a natural number and [] denot...

show that [(3+1)2n]+1[(\sqrt{3}+1)^{2n}]+1 is divisible by 2n+12^{n+1} where n is a natural number and [] denotes greatest integer function.

Answer

[(sqrt3+1)^2n]+1 is divisible by 2^(n+1)

Explanation

Solution

Let X=(3+1)2nX = (\sqrt{3}+1)^{2n}. We need to show that [X]+1[X]+1 is divisible by 2n+12^{n+1}.

First, let's simplify the expression for XX: X=((3+1)2)n=(3+1+23)n=(4+23)nX = ((\sqrt{3}+1)^2)^n = (3+1+2\sqrt{3})^n = (4+2\sqrt{3})^n.

Now, let's define a conjugate term YY: Y=(31)2n=((31)2)n=(3+123)n=(423)nY = (\sqrt{3}-1)^{2n} = ((\sqrt{3}-1)^2)^n = (3+1-2\sqrt{3})^n = (4-2\sqrt{3})^n.

Consider the sum X+YX+Y: X+Y=(4+23)n+(423)nX+Y = (4+2\sqrt{3})^n + (4-2\sqrt{3})^n. Let a=4a=4 and b=23b=2\sqrt{3}. Then X+Y=(a+b)n+(ab)nX+Y = (a+b)^n + (a-b)^n. Using the binomial expansion: (a+b)n=(n0)an+(n1)an1b+(n2)an2b2++(nn)bn(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n}b^n (ab)n=(n0)an(n1)an1b+(n2)an2b2+(1)n(nn)bn(a-b)^n = \binom{n}{0}a^n - \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 - \dots + (-1)^n \binom{n}{n}b^n Adding these two expansions, the terms with odd powers of bb cancel out: X+Y=2[(n0)an+(n2)an2b2+(n4)an4b4+]X+Y = 2 \left[ \binom{n}{0}a^n + \binom{n}{2}a^{n-2}b^2 + \binom{n}{4}a^{n-4}b^4 + \dots \right] Substitute a=4a=4 and b2=(23)2=4×3=12b^2 = (2\sqrt{3})^2 = 4 \times 3 = 12: X+Y=2[(n0)4n+(n2)4n2(12)+(n4)4n4(12)2+]X+Y = 2 \left[ \binom{n}{0}4^n + \binom{n}{2}4^{n-2}(12) + \binom{n}{4}4^{n-4}(12)^2 + \dots \right] Since all terms inside the square bracket are integers, X+YX+Y is an integer. Furthermore, since the entire expression is multiplied by 2, X+YX+Y is an even integer. Let X+Y=KX+Y = K, where KK is an even integer.

Now, let's evaluate the value of Y=(423)nY = (4-2\sqrt{3})^n. Consider the base 4234-2\sqrt{3}. We know that 32=93^2=9 and 42=164^2=16. So, 3<12<43 < \sqrt{12} < 4. Multiplying by 2, we get 6<23<86 < 2\sqrt{3} < 8. Wait, 23=4×3=122\sqrt{3} = \sqrt{4 \times 3} = \sqrt{12}. So 3<12<43 < \sqrt{12} < 4. Therefore, 3<23<43 < 2\sqrt{3} < 4. Now, subtract this from 4: 44<423<434-4 < 4-2\sqrt{3} < 4-3 0<423<10 < 4-2\sqrt{3} < 1. Since the base 4234-2\sqrt{3} is between 0 and 1, any positive integer power of it will also be between 0 and 1. Thus, 0<(423)n<10 < (4-2\sqrt{3})^n < 1 for any natural number nn. So, 0<Y<10 < Y < 1.

We have X+Y=KX+Y = K, where KK is an even integer, and 0<Y<10 < Y < 1. From X+Y=KX+Y=K, we can write X=KYX = K-Y. Since 0<Y<10 < Y < 1, we have 1<Y<0-1 < -Y < 0. Adding KK to all parts of the inequality: K1<KY<KK-1 < K-Y < K. So, K1<X<KK-1 < X < K.

By the definition of the greatest integer function, [X][X] is the greatest integer less than or equal to XX. Since K1<X<KK-1 < X < K, it implies that [X]=K1[X] = K-1.

We need to show that [X]+1[X]+1 is divisible by 2n+12^{n+1}. Substituting [X]=K1[X]=K-1: [X]+1=(K1)+1=K[X]+1 = (K-1)+1 = K. Since KK is an even integer, let K=2mK = 2m for some integer mm. We need to show that KK is divisible by 2n+12^{n+1}.

Let's re-examine K=(4+23)n+(423)nK = (4+2\sqrt{3})^n + (4-2\sqrt{3})^n. K=2n(2+3)n+2n(23)n=2n[(2+3)n+(23)n]K = 2^n (2+\sqrt{3})^n + 2^n (2-\sqrt{3})^n = 2^n \left[ (2+\sqrt{3})^n + (2-\sqrt{3})^n \right]. Let Pn=(2+3)n+(23)nP_n = (2+\sqrt{3})^n + (2-\sqrt{3})^n. Similar to the argument for X+YX+Y, PnP_n is an integer. Pn=k=0n(nk)2nk(3)k+k=0n(nk)2nk(3)kP_n = \sum_{k=0}^n \binom{n}{k} 2^{n-k} (\sqrt{3})^k + \sum_{k=0}^n \binom{n}{k} 2^{n-k} (-\sqrt{3})^k Pn=2[(n0)2n+(n2)2n23+(n4)2n432+]P_n = 2 \left[ \binom{n}{0} 2^n + \binom{n}{2} 2^{n-2} \cdot 3 + \binom{n}{4} 2^{n-4} \cdot 3^2 + \dots \right]. All terms inside the bracket are integers. The first term is (n0)2n=12n=2n\binom{n}{0} 2^n = 1 \cdot 2^n = 2^n. The second term is (n2)2n23\binom{n}{2} 2^{n-2} \cdot 3. The third term is (n4)2n432\binom{n}{4} 2^{n-4} \cdot 3^2. So, Pn=2(integer)P_n = 2 \cdot (\text{integer}). This means PnP_n is an even integer.

Therefore, K=2nPnK = 2^n P_n. Since PnP_n is an even integer, let Pn=2MP_n = 2M for some integer MM. Then K=2n(2M)=2n+1MK = 2^n (2M) = 2^{n+1}M. This shows that KK is a multiple of 2n+12^{n+1}. Thus, [X]+1=K[X]+1 = K is divisible by 2n+12^{n+1}.

This completes the proof.