Solveeit Logo

Question

Question: Show that \(\sqrt {\dfrac{{1 + \sin \theta }}{{1 - \sin \theta }}} = \dfrac{{1 + \sin \theta }}{{\co...

Show that 1+sinθ1sinθ=1+sinθcosθ\sqrt {\dfrac{{1 + \sin \theta }}{{1 - \sin \theta }}} = \dfrac{{1 + \sin \theta }}{{\cos \theta }}.

Explanation

Solution

Hint:Multiply the numerator and denominator by 1+sinθ\sqrt {1 + \sin \theta } and use the identity (sin2θ+cos2θ)=1\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = 1 to get required answer.

Complete step-by-step answer:
Given that,
1+sinθ1sinθ\Rightarrow \sqrt {\dfrac{{1 + \sin \theta }}{{1 - \sin \theta }}}
Multiplying the numerator and denominator by 1+sinθ\sqrt {1 + \sin \theta } we get:
1+sinθ1sinθ×1+sinθ1+sinθ (1+sinθ)2(1sin2θ)  \Rightarrow \sqrt {\dfrac{{1 + \sin \theta }}{{1 - \sin \theta }}} \times \sqrt {\dfrac{{1 + \sin \theta }}{{1 + \sin \theta }}} \\\ \Rightarrow \sqrt {\dfrac{{{{\left( {1 + \sin \theta } \right)}^2}}}{{\left( {1 - {{\sin }^2}\theta } \right)}}} \\\
As we know that:
(sin2θ+cos2θ)=1 1sin2θ=cos2θ  \left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = 1 \\\ \therefore 1 - {\sin ^2}\theta = {\cos ^2}\theta \\\
After putting the value equation can be written as:
(1+sinθ)2(cos2θ)\Rightarrow \sqrt {\dfrac{{{{\left( {1 + \sin \theta } \right)}^2}}}{{\left( {{{\cos }^2}\theta } \right)}}}
Taking square root both sides we get:
1+sinθcosθ\dfrac{{1 + \sin \theta }}{{\cos \theta }}
Hence proved that 1+sinθ1sinθ=1+sinθcosθ\sqrt {\dfrac{{1 + \sin \theta }}{{1 - \sin \theta }}} = \dfrac{{1 + \sin \theta }}{{\cos \theta }}

Note:- In this question after multiplying 1+sinθ1sinθ\sqrt {\dfrac{{1 + \sin \theta }}{{1 - \sin \theta }}} by 1+sinθ1+sinθ\sqrt {\dfrac{{1 + \sin \theta }}{{1 + \sin \theta }}} we got (1+sinθ)2(1sin2θ)\sqrt {\dfrac{{{{\left( {1 + \sin \theta } \right)}^2}}}{{\left( {1 - {{\sin }^2}\theta } \right)}}} as we know that (a+b)(ab)=(a2b2)\left( {a + b} \right)\left( {a - b} \right) = \left( {{a^2} - {b^2}} \right), after that we applied the trigonometric identity (sin2θ+cos2θ)=1\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = 1 then we took the square root both sides we got the result as 1+sinθcosθ\dfrac{{1 + \sin \theta }}{{\cos \theta }}, hence proved.Students should remember the important trigonometric identities and basic algebraic identities for solving these types of questions.