Solveeit Logo

Question

Question: Show that silver behaves as a good conductor at a frequency of $10^8 s^{-1}$. Also, calculate penetr...

Show that silver behaves as a good conductor at a frequency of 108s110^8 s^{-1}. Also, calculate penetration depth at this frequency given that ϵ=ϵ0,μ=μ0,σ=3×107mhos/m\epsilon = \epsilon_0, \mu = \mu_0, \sigma = 3 \times 10^7 mhos/m.

Answer

Silver behaves as a good conductor at 108s110^8 s^{-1} because its conductivity (σ=3×107S/m\sigma = 3 \times 10^7 \, S/m) is much greater than ωϵ05.56×103S/m\omega\epsilon_0 \approx 5.56 \times 10^{-3} \, S/m. The penetration depth is approximately 9.19μm9.19 \, \mu m.

Explanation

Solution

A material is a good conductor if its conductivity σ\sigma is much greater than the product of angular frequency ω\omega and permittivity ϵ\epsilon (σωϵ\sigma \gg \omega \epsilon).

Given frequency f=108s1f = 10^8 \, s^{-1}, so angular frequency ω=2πf=2π×108s1\omega = 2\pi f = 2\pi \times 10^8 \, s^{-1}. Conductivity σ=3×107S/m\sigma = 3 \times 10^7 \, S/m. Permittivity ϵ=ϵ08.85×1012F/m\epsilon = \epsilon_0 \approx 8.85 \times 10^{-12} \, F/m.

Calculate ωϵ0\omega \epsilon_0: ωϵ0=(2π×108)×(8.85×1012)5.56×103S/m\omega \epsilon_0 = (2\pi \times 10^8) \times (8.85 \times 10^{-12}) \approx 5.56 \times 10^{-3} \, S/m Since σ=3×107S/m5.56×103S/m\sigma = 3 \times 10^7 \, S/m \gg 5.56 \times 10^{-3} \, S/m, silver is a good conductor.

The penetration depth δ\delta is given by: δ=2ωμσ\delta = \sqrt{\frac{2}{\omega \mu \sigma}} Using μ=μ0=4π×107H/m\mu = \mu_0 = 4\pi \times 10^{-7} \, H/m: ωμ0σ=(2π×108)×(4π×107)×(3×107)2.37×1010m2\omega \mu_0 \sigma = (2\pi \times 10^8) \times (4\pi \times 10^{-7}) \times (3 \times 10^7) \approx 2.37 \times 10^{10} \, m^{-2} δ=22.37×10100.844×10100.919×105m=9.19μm\delta = \sqrt{\frac{2}{2.37 \times 10^{10}}} \approx \sqrt{0.844 \times 10^{-10}} \approx 0.919 \times 10^{-5} \, m = 9.19 \, \mu m