Solveeit Logo

Question

Mathematics Question on Determinants

Show that points A (a,b+c),B (b,c+a),C (c,a+b) are collinear

Answer

Area of ∆ ABC is given by the relation,

△=\frac{1}{2}$$\begin{vmatrix}a&b+c&1\\\b&c+a&1\\\c&a+b&1\end{vmatrix}

=\frac{1}{2}$$\begin{vmatrix}a&b+c&1\\\b-a&a-b&0\\\c-a&a-c&0\end{vmatrix} (Applying R2\to R2-R1 and R33\toR3-R1)

=12\frac{1}{2}(a-b)(c-a)ab+c1110\110\begin{vmatrix}a&b+c&1\\\\-1&1&0\\\1&-1&0\end{vmatrix}

=12\frac{1}{2}(a-b)(c-a)ab+c1110\110\begin{vmatrix}a&b+c&1\\\\-1&1&0\\\1&-1&0\end{vmatrix} (applying R3\to R3+R2)
=0 (All elements of R3 are 0)
Thus, the area of the triangle formed by points A, B, and C is zero

Hence, the points A, B, and C are collinear.