Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

Show that of all the rectangles inscribed in a given fixed circle,the square has the maximum area.

Answer

Let a rectangle of length l and breadth b be inscribed in the given circle of radius a.

Then,the diagonal passes through the centre and is of length 2a  cm.2a \space cm.

Now,by applying the Pythagoras theorem,we have:

(2a)2=l2+b2(2a)^2=l^2+b^2

b2=4a2l2⇒b^2=4a^2-l^2

b=4a2l2⇒b=\sqrt{4a^2-l^2}

⧠Area of the rectangle,A=l4a2l2,A=l\sqrt{4a^2-l^2}

∴\frac{dA}{dl}$$=\sqrt{4a^2-l^2}+l\frac{1}{2√4a^2-l^2}(-2l)=\sqrt{4a^2-l^2}-\frac{l^2}{\sqrt{4a^2-l^2}}

=4a22l24a2l2=\frac{4a^2-2l^2}{\sqrt{4a^2-l^2}}

d2Adl2=4a2l2(4l)(4a22l2)(2l)24a2l2(4a2l2)\frac{d^2A}{dl^2}=\frac{\sqrt{4a^2-l^2}(-4l)-(4a^2-2l^2)\frac{(-2l)}{2\sqrt{4a^2-l^2}}}{(4a^2-l^2)}

=(4a62l62)(4l)+l(4a22l2)(4a2l2)32=\frac{(4a62-l62)(-4l)+l(4a^2-2l^2)}{(4a^2-l^2)\frac{3}{2}}

=12a2l+2l3(4a2l2)32=\frac{-12a^2l+2l^3}{(4a^2-l^2)\frac{3}{2}}=2l(6a2l2)(4a2l2)32\frac{-2l(6a^2-l^2)}{(4a^2-l^2)\frac{3}{2}}

Now,dAdl=0,\frac{dA}{dl}=0 gives 4a2=2l2l=2a4a^2=2l^2⇒l=\sqrt{2}a

b=4a22a2=2a2=2a⇒b=\sqrt{4a^2-2a^2}=\sqrt{2a^2}=\sqrt{2}a

Now,thenl=2a l=\sqrt{2}a

d2Adl2\frac{d^2A}{dl^2}=2(2a)(6a22a2)22a3\frac{-2(\sqrt{2}a)(6a^2-2a^2)}{2\sqrt{2}a^3}=82a322a3=4<0\frac{-8\sqrt{2}a^3}{2\sqrt{2}a^3}=-4<0

∴By the second derivative test,whenl=2a l=\sqrt{2}a,then the area of the rectangle is the

maximum.

Since l=b=2al=b=\sqrt{2}a,the rectangle is a square.

Hence,it has been proved that of all the rectangles inscribed in the given fixed circle,

the square has the maximum area.