Solveeit Logo

Question

Question: Show that max and min values of \(8\cos \theta - 15\sin \theta\) are 17 and -17 respectively....

Show that max and min values of 8cosθ15sinθ8\cos \theta - 15\sin \theta are 17 and -17 respectively.

Explanation

Solution

Hint: Here, we will use the extreme values of the form acosθ+bsinθa\cos \theta + b\sin \theta to find the max and min values.

Given,
8cosθ15sinθ(1)8\cos \theta - 15\sin \theta \to (1)
Let us compare the equation (1) with acosθ+bsinθa\cos \theta + b\sin \theta , we get
a=8,b=15a = 8,b = - 15
As, we know the maximum and minimum values of acosθ+bsinθa\cos \theta + b\sin \theta are a2+b2\sqrt {{a^2} + {b^2}} and -a2+b2\sqrt {{a^2} + {b^2}} respectively.
Therefore, substituting the values of a and b, we get
max=a2+b2=82+(15)2=64+225=289=17 min=a2+b2=82+(15)2=64+225=289=17  \Rightarrow \max = \sqrt {{a^2} + {b^2}} = \sqrt {{8^2} + {{( - 15)}^2}} = \sqrt {64 + 225} = \sqrt {289} = 17 \\\ \Rightarrow \min = - \sqrt {{a^2} + {b^2}} = - \sqrt {{8^2} + {{( - 15)}^2}} = - \sqrt {64 + 225} = - \sqrt {289} = - 17 \\\
Hence, the maximum value of 8cosθ15sinθ8\cos \theta - 15\sin \theta is 17 and minimum value of
8cosθ15sinθ8\cos \theta - 15\sin \theta is -17.
Note: The maximum and minimum of the acosθ+bsinθa\cos \theta + b\sin \theta will differ only by
the sign of the value i.e.., the maximum value will have the positive sign whereas the minimum value will have the negative sign of the same value.