Solveeit Logo

Question

Question: Show that \(\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\dfrac{1}{4}\log 5-\dfrac{2}...

Show that log54.2101823=14log525log223log3\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\dfrac{1}{4}\log 5-\dfrac{2}{5}\log 2-\dfrac{2}{3}\log 3 .

Explanation

Solution

Hint: The given question is related to logarithms and its properties. Try to recall the properties of logarithms which are related to logarithm of product and division of two numbers and logarithms of numbers with exponents.

Complete step by step solution:
Before solving the problem , we must know about the properties of logarithms. The following properties will be used in solving the question :
log(a×b)=log(a)+log(b)\log (a\times b)=\log (a)+\log (b)
log(ab)=log(a)log(b)\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)
log(a)b=b×log(a)\log {{(a)}^{b}}=b\times \log (a)
Let’s consider the LHS. We know that an\sqrt[n]{a} can be written as a1n{{a}^{\dfrac{1}{n}}} , or we can say an=a1n\sqrt[n]{a}={{a}^{\dfrac{1}{n}}}.
So , we can write 54\sqrt[4]{5} as 514{{5}^{\dfrac{1}{4}}} , 210\sqrt[10]{2} as 2110{{2}^{\dfrac{1}{10}}}, 183\sqrt[3]{18} as 1813{{18}^{\dfrac{1}{3}}} and 2\sqrt{2} as 212{{2}^{\dfrac{1}{2}}} .
Now , we need to find the value of log54.2101823\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}.
We know , 54=514\sqrt[4]{5}={{5}^{\dfrac{1}{4}}} , 210=2110\sqrt[10]{2}={{2}^{\dfrac{1}{10}}}, 183=1813\sqrt[3]{18}={{18}^{\dfrac{1}{3}}} and 2=212\sqrt{2}={{2}^{\dfrac{1}{2}}} . So , log54.2101823=log((514×2110)÷(18×212)13)=log((514×2110)÷((1813)×(212)13))\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\log \left( \left( {{5}^{\dfrac{1}{4}}}\times {{2}^{\dfrac{1}{10}}} \right)\div {{\left( 18\times {{2}^{\dfrac{1}{2}}} \right)}^{\dfrac{1}{3}}} \right)=\log \left( \left( {{5}^{\dfrac{1}{4}}}\times {{2}^{\dfrac{1}{10}}} \right)\div \left( \left( {{18}^{\dfrac{1}{3}}} \right)\times {{\left( {{2}^{\dfrac{1}{2}}} \right)}^{\dfrac{1}{3}}} \right) \right)
Now , we know log(a×b)=log(a)+log(b)\log (a\times b)=\log (a)+\log (b) and log(ab)=log(a)log(b)\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b) and (am)n=amn{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}
So, log((514×2110)÷((1813)×(212)13))=(log(514)+log(2110))(log(1813)+log(216))\log \left( \left( {{5}^{\dfrac{1}{4}}}\times {{2}^{\dfrac{1}{10}}} \right)\div \left( \left( {{18}^{\dfrac{1}{3}}} \right)\times {{\left( {{2}^{\dfrac{1}{2}}} \right)}^{\dfrac{1}{3}}} \right) \right)=\left( \log \left( {{5}^{\dfrac{1}{4}}} \right)+\log \left( {{2}^{\dfrac{1}{10}}} \right) \right)-\left( \log \left( {{18}^{\dfrac{1}{3}}} \right)+\log \left( {{2}^{\dfrac{1}{6}}} \right) \right) .
Now , we know log(a)b=b×log(a)\log {{(a)}^{b}}=b\times \log (a).
So , (log(514)+log(2110))(log(1813)+log(216))=14log(5)+110log(2)13log(18)16log(2)\left( \log \left( {{5}^{\dfrac{1}{4}}} \right)+\log \left( {{2}^{\dfrac{1}{10}}} \right) \right)-\left( \log \left( {{18}^{\dfrac{1}{3}}} \right)+\log \left( {{2}^{\dfrac{1}{6}}} \right) \right)=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 18 \right)-\dfrac{1}{6}\log \left( 2 \right)
We know we can write 1818 as 2×3×32\times 3\times 3 .
So , 14log(5)+110log(2)13log(18)16log(2)=14log(5)+110log(2)13log(2×3×3)16log(2)\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 18 \right)-\dfrac{1}{6}\log \left( 2 \right)=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 2\times 3\times 3 \right)-\dfrac{1}{6}\log \left( 2 \right)
Now , we know log(a×b)=log(a)+log(b)\log (a\times b)=\log (a)+\log (b).
So , we can write log(2×3×3)\log \left( 2\times 3\times 3 \right) as log2+log3+log3=log2+2log3\log 2+\log 3+\log 3=\log 2+2\log 3.
Now , after calculating all these values , we can write 14log(5)+110log(2)13log(18)16log(2)\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 18 \right)-\dfrac{1}{6}\log \left( 2 \right) as 14log(5)+110log(2)13(log2+2log3)16log(2)\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\left( \log 2+2\log 3 \right)-\dfrac{1}{6}\log \left( 2 \right)
Now , we will open the brackets . On opening the brackets , we get
log54.2101823=14log(5)+110log(2)13log(2)23log(3)16log(2)\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 2 \right)-\dfrac{2}{3}\log \left( 3 \right)-\dfrac{1}{6}\log \left( 2 \right)
Now , we will write all the terms with log2\log 2together .
So , we get log54.2101823=14log(5)+110log(2)13log(2)16log(2)23log(3)\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 2 \right)-\dfrac{1}{6}\log \left( 2 \right)-\dfrac{2}{3}\log \left( 3 \right).
Now , we will take log2\log 2 common.
So , we get log54.2101823=14log(5)+log2(1101316)23log3\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\dfrac{1}{4}\log \left( 5 \right)+\log 2\left( \dfrac{1}{10}-\dfrac{1}{3}-\dfrac{1}{6} \right)-\dfrac{2}{3}\log 3
Now , we will take the LCM of the denominators and solve the fractions in the brackets.
To find the LCM , we will factorize the denominators.

& 3=3\times 1 \\\ & 6=3\times 2\times 1 \\\ & 10=2\times 5\times 1 \\\ \end{aligned}$$ So , the LCM of the denominators is $2\times 3\times 5=30$. So , $\left( \dfrac{1}{10}-\dfrac{1}{3}-\dfrac{1}{6} \right)=\dfrac{3-10-5}{30}=-\dfrac{12}{30}=-\dfrac{2}{5}$ . So , we can write $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}$ as $\dfrac{1}{4}\log \left( 5 \right)-\dfrac{2}{5}\log 2-\dfrac{2}{3}\log 3$ . Hence , the value of $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}$ is $\dfrac{1}{4}\log \left( 5 \right)-\dfrac{2}{5}\log 2-\dfrac{2}{3}\log 3$. Hence, proved. Note: Students generally get confused between $\log \left( \dfrac{a}{b} \right)$ and $\dfrac{\log a}{\log b}$ . Both are not the same. $\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)$ which is not equal to $\dfrac{\log a}{\log b}$. Such confusion should be avoided and the formulas should be remembered. They are helpful in solving various problems related to logarithms.