Solveeit Logo

Question

Question: Show that \[{{\log }_{b}}a{{\log }_{c}}b{{\log }_{a}}c=1.\]...

Show that logbalogcblogac=1.{{\log }_{b}}a{{\log }_{c}}b{{\log }_{a}}c=1.

Explanation

Solution

Hint: Use the base change property of logarithm to make each log with the same base . Change the base of each expression to either 10 or e.

Complete step-by-step answer:

We have the expression(logba)(logcb)(logac)\left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right).
For a typical calculation, we can change logarithms to base 10 or e.
Let us use the base as 10 here.
logba=log10alog10b=logalogb\therefore {{\log }_{b}}a=\dfrac{{{\log }_{10}}a}{{{\log }_{10}}b}=\dfrac{\log a}{\log b}
log10a{{\log }_{10}}a can be written as loga.\log a.
Similarly, logcb=log10blog10c=logblogc logac=log10clog10a=logcloga \begin{aligned} & {{\log }_{c}}b=\dfrac{{{\log }_{10}}b}{{{\log }_{10}}c}=\dfrac{logb}{\log c} \\\ & {{\log }_{a}}c=\dfrac{{{\log }_{10}}c}{{{\log }_{10}}a}=\dfrac{\log c}{\log a} \\\ \end{aligned}
Substituting these values in the expression, we get,
(logba)(logcb)(logac)=logalogb×logblogc×logcloga.\therefore \left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=\dfrac{\log a}{\log b}\times \dfrac{\log b}{\log c}\times \dfrac{\log c}{\log a}.
Now let us cancel out loga,logb,logc\log a,\log b,\log c from the numerator and denominator we get the answer as 1.
(logba)(logcb)(logac)=1.\left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=1.
Hence we have proved that (logba)(logcb)(logac)=1.\left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=1.

Note: We solved the problem using base k as 10. We know that the base can also be taken as k = e.
Then logba=logealogeb;logcb=logeblogec;logac=logeclogea.{{\log }_{b}}a=\dfrac{{{\log }_{e}}a}{{{\log }_{e}}b};{{\log }_{c}}b=\dfrac{{{\log }_{e}}b}{{{\log }_{e}}c};{{\log }_{a}}c=\dfrac{{{\log }_{e}}c}{{{\log }_{e}}a}.
By multiplying these, we still get the value as 1.
(logba)(logcb)(logac)=logealogeb×logeblogec×logeclogea=1.\therefore \left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=\dfrac{{{\log }_{e}}a}{{{\log }_{e}}b}\times \dfrac{{{\log }_{e}}b}{{{\log }_{e}}c}\times \dfrac{{{\log }_{e}}c}{{{\log }_{e}}a}=1.