Solveeit Logo

Question

Question: Show that \[\left( {\dfrac{{\sqrt 7 + i\sqrt 3 }}{{\sqrt 7 - i\sqrt 3 }} + \dfrac{{\sqrt 7 - i\sqrt ...

Show that (7+i37i3+7i37+i3)\left( {\dfrac{{\sqrt 7 + i\sqrt 3 }}{{\sqrt 7 - i\sqrt 3 }} + \dfrac{{\sqrt 7 - i\sqrt 3 }}{{\sqrt 7 + i\sqrt 3 }}} \right) is real.

Explanation

Solution

This is a problem based on the complex numbers. Here we just need to add these two complex numbers. But before that we just need to rationalise both the numbers individually. Then we will add and will see the final answer whether it is real or imaginary.

Complete step-by-step answer:
First, we assume that given question to X+YX + Y
XX means,
X=7+i37i3X = \dfrac{{\sqrt 7 + i\sqrt 3 }}{{\sqrt 7 - i\sqrt 3 }} and
YY means,
Y=7i37+i3Y = \dfrac{{\sqrt 7 - i\sqrt 3 }}{{\sqrt 7 + i\sqrt 3 }}
We find that X+YX + Y is real.
First, we find proper form of XX
X=7+i37i3X = \dfrac{{\sqrt 7 + i\sqrt 3 }}{{\sqrt 7 - i\sqrt 3 }}
We used to rationalize conjugate method,
Conjugate means multiple the given number numerator or denominator opposite the symbol.it is a conjugate method.
Here given number is
X=7+i37i3X = \dfrac{{\sqrt 7 + i\sqrt 3 }}{{\sqrt 7 - i\sqrt 3 }}
So we used to conjugate method here
X=7+i37i3×7+i37+i3X = \dfrac{{\sqrt 7 + i\sqrt 3 }}{{\sqrt 7 - i\sqrt 3 }} \times \dfrac{{\sqrt 7 + i\sqrt 3 }}{{\sqrt 7 + i\sqrt 3 }}
In this number we used to multiply the conjugate of denominator value.
Multiply on numerator to numerator and denominator to the denominator.
X=(7+i3)2(7)2(i3)2X = \dfrac{{{{\left( {\sqrt 7 + i\sqrt 3 } \right)}^2}}}{{{{\left( {\sqrt 7 } \right)}^2} - {{\left( {i\sqrt 3 } \right)}^2}}}
Here we used some formulae
Those formulae are

(a+b)2=a2+2ab+b2 (a+b)(ab)=a2b2  {\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2} \\\ (a + b)(a - b) = {a^2} - {b^2} \\\

So that,
(7+i3)2=(7)2+2i73+(i3)2{\left( {\sqrt 7 + i\sqrt 3 } \right)^2} = {\left( {\sqrt 7 } \right)^2} + 2i\sqrt 7 \sqrt 3 + {\left( {i\sqrt 3 } \right)^2}
Putting i2=1{i^2} = - 1
=7+2i213= 7 + 2i\sqrt {21} - 3
=4+2i21= 4 + 2i\sqrt {21}
Then

(7)2(i3)2=7+3 =10  {\left( {\sqrt 7 } \right)^2} - {\left( {i\sqrt 3 } \right)^2} = 7 + 3 \\\ = 10 \\\

And we apply to XX
X=4+2i2110X = \dfrac{{4 + 2i\sqrt {21} }}{{10}}
And now we find YY values
Y=7i37+i3Y = \dfrac{{\sqrt 7 - i\sqrt 3 }}{{\sqrt 7 + i\sqrt 3 }}
So we used to rationalizing conjugate method here
Y=7i37+i3×7i37i3Y = \dfrac{{\sqrt 7 - i\sqrt 3 }}{{\sqrt 7 + i\sqrt 3 }} \times \dfrac{{\sqrt 7 - i\sqrt 3 }}{{\sqrt 7 - i\sqrt 3 }}
In this number we used to multiply the conjugate of denominator value.
Multiply on numerator to numerator and denominator to the denominator.
X=(7i3)2(7)2(i3)2X = \dfrac{{{{\left( {\sqrt 7 - i\sqrt 3 } \right)}^2}}}{{{{\left( {\sqrt 7 } \right)}^2} - {{\left( {i\sqrt 3 } \right)}^2}}}
So that,

(7i3)2=(7)22i73+(i3)2 =72i213 =42i21  {\left( {\sqrt 7 - i\sqrt 3 } \right)^2} = {\left( {\sqrt 7 } \right)^2} - 2i\sqrt 7 \sqrt 3 + {\left( {i\sqrt 3 } \right)^2} \\\ = 7 - 2i\sqrt {21} - 3 \\\ = 4 - 2i\sqrt {21} \\\

Previous terms used formulae are (ab)2=a22ab+b2{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}
Then

(7)2(i3)2=7+3 =10  {\left( {\sqrt 7 } \right)^2} - {\left( {i\sqrt 3 } \right)^2} = 7 + 3 \\\ = 10 \\\

And we apply to YY
Y=42i2110Y = \dfrac{{4 - 2i\sqrt {21} }}{{10}}
Now we add to XXand YY values

X+Y=4+2i2110+42i2110 =4+2i21+42i2110  X + Y = \dfrac{{4 + 2i\sqrt {21} }}{{10}} + \dfrac{{4 - 2i\sqrt {21} }}{{10}} \\\ = \dfrac{{4 + 2i\sqrt {21} + 4 - 2i\sqrt {21} }}{{10}} \\\

The denominator is the same on XXand YY
So merge to two terms.
now add the values,

=810 =45  = \dfrac{8}{{10}} \\\ = \dfrac{4}{5} \\\

Now we get 45\dfrac{4}{5}
This is not a complex value. because this value does not include ii the term.
So this is real. Finally, we get the real value of the given question.

Note: Any number which is in the form of a+iba+ib is called a Complex number. where i=1i = \sqrt{-1}. Here a is the real part and b is the imaginary part. If a number is not in the form of a+ib is known as a real number.