Solveeit Logo

Question

Question: Show that \({\left( {\cos \theta } \right)^3}\left( {\sin 3\theta } \right) + {\left( {\sin \theta }...

Show that (cosθ)3(sin3θ)+(sinθ)3(cos3θ)=34(sin4θ){\left( {\cos \theta } \right)^3}\left( {\sin 3\theta } \right) + {\left( {\sin \theta } \right)^3}\left( {\cos 3\theta } \right) = \dfrac{3}{4}\left( {\sin 4\theta } \right).

Explanation

Solution

Hint: Here, we will be proceeding with the help of the trigonometric formulas which are sin3θ=3sinθ4(sinθ)3\sin 3\theta = 3\sin \theta - 4{\left( {\sin \theta } \right)^3} and cos3θ=4(cosθ)33cosθ\cos 3\theta = 4{\left( {\cos \theta } \right)^3} - 3\cos \theta in order to simplify the LHS of the equation which needs to be proved.

Complete step-by-step answer:
To show: (cosθ)3(sin3θ)+(sinθ)3(cos3θ)=34(sin4θ){\left( {\cos \theta } \right)^3}\left( {\sin 3\theta } \right) + {\left( {\sin \theta } \right)^3}\left( {\cos 3\theta } \right) = \dfrac{3}{4}\left( {\sin 4\theta } \right)
As we know that sin3θ=3sinθ4(sinθ)3\sin 3\theta = 3\sin \theta - 4{\left( {\sin \theta } \right)^3} and cos3θ=4(cosθ)33cosθ\cos 3\theta = 4{\left( {\cos \theta } \right)^3} - 3\cos \theta
Taking LHS of the equation which needs to be proved, we have
LHS=(cosθ)3(sin3θ)+(sinθ)3(cos3θ){\text{LHS}} = {\left( {\cos \theta } \right)^3}\left( {\sin 3\theta } \right) + {\left( {\sin \theta } \right)^3}\left( {\cos 3\theta } \right)
By substituting the formulas for (sin3θ)\left( {\sin 3\theta } \right) and (cos3θ)\left( {\cos 3\theta } \right) in the above equation, we get

LHS=(cosθ)3[3sinθ4(sinθ)3]+(sinθ)3[4(cosθ)33cosθ] LHS=3(sinθ)(cosθ)34(sinθ)3(cosθ)3+4(cosθ)3(sinθ)33(cosθ)(sinθ)3 LHS=3(sinθ)(cosθ)33(cosθ)(sinθ)3  \Rightarrow {\text{LHS}} = {\left( {\cos \theta } \right)^3}\left[ {3\sin \theta - 4{{\left( {\sin \theta } \right)}^3}} \right] + {\left( {\sin \theta } \right)^3}\left[ {4{{\left( {\cos \theta } \right)}^3} - 3\cos \theta } \right] \\\ \Rightarrow {\text{LHS}} = 3\left( {\sin \theta } \right){\left( {\cos \theta } \right)^3} - 4{\left( {\sin \theta } \right)^3}{\left( {\cos \theta } \right)^3} + 4{\left( {\cos \theta } \right)^3}{\left( {\sin \theta } \right)^3} - 3\left( {\cos \theta } \right){\left( {\sin \theta } \right)^3} \\\ \Rightarrow {\text{LHS}} = 3\left( {\sin \theta } \right){\left( {\cos \theta } \right)^3} - 3\left( {\cos \theta } \right){\left( {\sin \theta } \right)^3} \\\

Now, taking 3(sinθ)(cosθ)3\left( {\sin \theta } \right)\left( {\cos \theta } \right) common in the above equation, we get
LHS=3(sinθ)(cosθ)[(cosθ)2(sinθ)2]\Rightarrow {\text{LHS}} = 3\left( {\sin \theta } \right)\left( {\cos \theta } \right)\left[ {{{\left( {\cos \theta } \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right]
Also we know that (cosθ)2(sinθ)2=cos2θ{\left( {\cos \theta } \right)^2} - {\left( {\sin \theta } \right)^2} = \cos 2\theta
LHS=3(sinθ)(cosθ)(cos2θ) (1)\Rightarrow {\text{LHS}} = 3\left( {\sin \theta } \right)\left( {\cos \theta } \right)\left( {\cos 2\theta } \right){\text{ }} \to {\text{(1)}}
Since we know that sin2θ=2(sinθ)(cosθ)\sin 2\theta = 2\left( {\sin \theta } \right)\left( {\cos \theta } \right)
Let us multiply and divide the RHS of equation (1) by 2, we get
LHS=3(sinθ)(cosθ)(cos2θ) LHS=32[2(sinθ)(cosθ)](cos2θ)  \Rightarrow {\text{LHS}} = 3\left( {\sin \theta } \right)\left( {\cos \theta } \right)\left( {\cos 2\theta } \right) \\\ \Rightarrow {\text{LHS}} = \dfrac{3}{2}\left[ {2\left( {\sin \theta } \right)\left( {\cos \theta } \right)} \right]\left( {\cos 2\theta } \right) \\\
By substituting the formula for sin2θ\sin 2\theta in the above equation, we get
LHS=32(sin2θ)(cos2θ)\Rightarrow {\text{LHS}} = \dfrac{3}{2}\left( {\sin 2\theta } \right)\left( {\cos 2\theta } \right)

Again multiply and divide the RHS of above equation by 2 and using the formulasin2θ=2(sinθ)(cosθ)\sin 2\theta = 2\left( {\sin \theta } \right)\left( {\cos \theta } \right), we get

LHS=32(sin2θ)(cos2θ) LHS=34[2(sin2θ)(cos2θ)] LHS=34(sin4θ)=RHS  \Rightarrow {\text{LHS}} = \dfrac{3}{2}\left( {\sin 2\theta } \right)\left( {\cos 2\theta } \right) \\\ \Rightarrow {\text{LHS}} = \dfrac{3}{4}\left[ {2\left( {\sin 2\theta } \right)\left( {\cos 2\theta } \right)} \right] \\\ \Rightarrow {\text{LHS}} = \dfrac{3}{4}\left( {\sin 4\theta } \right) = {\text{RHS}} \\\

Clearly, from the above equation it is clear that the LHS of the equation which needs to be proved is equal to its RHS.
Hence, (cosθ)3(sin3θ)+(sinθ)3(cos3θ)=34(sin4θ){\left( {\cos \theta } \right)^3}\left( {\sin 3\theta } \right) + {\left( {\sin \theta } \right)^3}\left( {\cos 3\theta } \right) = \dfrac{3}{4}\left( {\sin 4\theta } \right)

Note: In this particular problem, we will somehow convert the LHS of the equation which needs to be proved in terms of some trigonometric function with angle 4θ4\theta which is there in RHS of the equation which needs to be proved by using the formulas which are sin2θ=2(sinθ)(cosθ)\sin 2\theta = 2\left( {\sin \theta } \right)\left( {\cos \theta } \right) and (cosθ)2(sinθ)2=cos2θ{\left( {\cos \theta } \right)^2} - {\left( {\sin \theta } \right)^2} = \cos 2\theta .