Question
Question: Show that \( \left| \begin{matrix} b+c & c+a & a+b \\\ a+b & b+c & c+a \\\ a & b & c ...
Show that b+c a+b a c+ab+cba+bc+ac=a3+b3+c3−3abc .
Solution
Hint : We first use the row and column operations to simplify the determinant values. We take a+b+c as the common component from the same row. Then we expand the determinant to find the final value. We use formula of (a+b+c)(a2+b2+c2−ab−bc−ac)=a3+b3+c3−3abc.
Complete step-by-step answer :
We need to show that the determinant value will be equal to a3+b3+c3−3abc .
We can apply row operations on the determinant value without changing the initial form.
So, we take the form of R1′=R1+R3 .
We get b+c a+b a c+ab+cba+bc+ac=a+b+c a+b a b+c+ab+cba+b+cc+ac .
We take common the term a+b+c from the first row.
b+c a+b a c+ab+cba+bc+ac=(a+b+c)1 a+b a 1b+cb1c+ac
Now we simplify further by taking the operations like C2′=C2−C1 and C3′=C3−C1 .
We get (a+b+c)1 a+b a 1b+cb1c+ac=(a+b+c)1 a+b a 0c−ab−a0c−bc−a
Now we expand the determinant value through the first row.
So, b+c a+b a c+ab+cba+bc+ac=(a+b+c)[(c−a)2−(c−b)(b−a)] .
We simplify the expression and get