Solveeit Logo

Question

Question: Show that \( \left| \begin{matrix} b+c & c+a & a+b \\\ a+b & b+c & c+a \\\ a & b & c ...

Show that b+cc+aa+b a+bb+cc+a abc =a3+b3+c33abc\left| \begin{matrix} b+c & c+a & a+b \\\ a+b & b+c & c+a \\\ a & b & c \\\ \end{matrix} \right|={{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc .

Explanation

Solution

Hint : We first use the row and column operations to simplify the determinant values. We take a+b+ca+b+c as the common component from the same row. Then we expand the determinant to find the final value. We use formula of (a+b+c)(a2+b2+c2abbcac)=a3+b3+c33abc\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ac \right)={{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc.

Complete step-by-step answer :
We need to show that the determinant value will be equal to a3+b3+c33abc{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc .
We can apply row operations on the determinant value without changing the initial form.
So, we take the form of R1=R1+R3{{R}_{1}}^{'}={{R}_{1}}+{{R}_{3}} .
We get b+cc+aa+b a+bb+cc+a abc =a+b+cb+c+aa+b+c a+bb+cc+a abc \left| \begin{matrix} b+c & c+a & a+b \\\ a+b & b+c & c+a \\\ a & b & c \\\ \end{matrix} \right|=\left| \begin{matrix} a+b+c & b+c+a & a+b+c \\\ a+b & b+c & c+a \\\ a & b & c \\\ \end{matrix} \right| .
We take common the term a+b+ca+b+c from the first row.
b+cc+aa+b a+bb+cc+a abc =(a+b+c)111 a+bb+cc+a abc \left| \begin{matrix} b+c & c+a & a+b \\\ a+b & b+c & c+a \\\ a & b & c \\\ \end{matrix} \right|=\left( a+b+c \right)\left| \begin{matrix} 1 & 1 & 1 \\\ a+b & b+c & c+a \\\ a & b & c \\\ \end{matrix} \right|
Now we simplify further by taking the operations like C2=C2C1{{C}_{2}}^{'}={{C}_{2}}-{{C}_{1}} and C3=C3C1{{C}_{3}}^{'}={{C}_{3}}-{{C}_{1}} .
We get (a+b+c)111 a+bb+cc+a abc =(a+b+c)100 a+bcacb abaca \left( a+b+c \right)\left| \begin{matrix} 1 & 1 & 1 \\\ a+b & b+c & c+a \\\ a & b & c \\\ \end{matrix} \right|=\left( a+b+c \right)\left| \begin{matrix} 1 & 0 & 0 \\\ a+b & c-a & c-b \\\ a & b-a & c-a \\\ \end{matrix} \right|
Now we expand the determinant value through the first row.
So, b+cc+aa+b a+bb+cc+a abc =(a+b+c)[(ca)2(cb)(ba)]\left| \begin{matrix} b+c & c+a & a+b \\\ a+b & b+c & c+a \\\ a & b & c \\\ \end{matrix} \right|=\left( a+b+c \right)\left[ {{\left( c-a \right)}^{2}}-\left( c-b \right)\left( b-a \right) \right] .
We simplify the expression and get

& \left( a+b+c \right)\left[ {{\left( c-a \right)}^{2}}-\left( c-b \right)\left( b-a \right) \right] \\\ & =\left( a+b+c \right)\left( {{c}^{2}}+{{a}^{2}}-2ac-bc+ac+{{b}^{2}}-ab \right) \\\ & =\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ac \right) \\\ \end{aligned}$$ We also know that $$\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ac \right)={{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc$$. Therefore, $ \left| \begin{matrix} b+c & c+a & a+b \\\ a+b & b+c & c+a \\\ a & b & c \\\ \end{matrix} \right|={{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc $ . **Note** : There are certain operations which we can apply for the problems. We can switch two rows or columns which causes the determinant to switch sign. We can add a multiple of one row to another which causes the determinant to remain the same. We can multiply a row as a constant result in the determinant scaling by that constant.