Question
Question: Show that \(\left| {\begin{array}{*{20}{c}} {{a_1}{l_1} + {b_1}{m_1}}&{{a_1}{l_2} + {b_1}{m_2}}&...
Show that \left| {\begin{array}{*{20}{c}} {{a_1}{l_1} + {b_1}{m_1}}&{{a_1}{l_2} + {b_1}{m_2}}&{{a_1}{l_3} + {b_1}{m_3}} \\\ {{a_2}{l_1} + {b_2}{m_1}}&{{a_2}{l_2} + {b_2}{m_2}}&{{a_2}{l_3} + {b_2}{m_3}} \\\ {{a_3}{l_1} + {b_3}{m_1}}&{{a_3}{l_2} + {b_3}{m_2}}&{{a_3}{l_3} + {b_3}{m_3}} \end{array}} \right| = 0.
Solution
Firstly, Try to apply some row and column operations and use properties of the determinant to break the given determinant. Use Simple manipulations like ∣A+B∣=∣A∣+∣B∣, ∣kA∣=k∣A∣, R1→R1−R2.
Complete step by step solution:
Given,
L.H.S. = \left| {\begin{array}{*{20}{c}}
{{a_1}{l_1} + {b_1}{m_1}}&{{a_1}{l_2} + {b_1}{m_2}}&{{a_1}{l_3} + {b_1}{m_3}} \\\
{{a_2}{l_1} + {b_2}{m_1}}&{{a_2}{l_2} + {b_2}{m_2}}&{{a_2}{l_3} + {b_2}{m_3}} \\\
{{a_3}{l_1} + {b_3}{m_1}}&{{a_3}{l_2} + {b_3}{m_2}}&{{a_3}{l_3} + {b_3}{m_3}}
\end{array}} \right|
Let \Delta = \left| {\begin{array}{*{20}{c}}
{{a_1}{l_1} + {b_1}{m_1}}&{{a_1}{l_2} + {b_1}{m_2}}&{{a_1}{l_3} + {b_1}{m_3}} \\\
{{a_2}{l_1} + {b_2}{m_1}}&{{a_2}{l_2} + {b_2}{m_2}}&{{a_2}{l_3} + {b_2}{m_3}} \\\
{{a_3}{l_1} + {b_3}{m_1}}&{{a_3}{l_2} + {b_3}{m_2}}&{{a_3}{l_3} + {b_3}{m_3}}
\end{array}} \right|
Now by Applying Properties of Determinant, ∣A+B∣=∣A∣+∣B∣
\Rightarrow \Delta = \left| {\begin{array}{*{20}{c}}
{{a_1}{l_1}}&{{a_1}{l_2}}&{{a_1}{l_3}} \\\
{{a_2}{l_1}}&{{a_2}{l_2}}&{{a_2}{l_3}} \\\
{{a_3}{l_1}}&{{a_3}{l_2}}&{{a_3}{l_3}}
\end{array}} \right| + \left| {\begin{array}{*{20}{c}}
{{b_1}{m_1}}&{{b_1}{m_2}}&{{b_1}{m_3}} \\\
{{b_2}{m_1}}&{{b_2}{m_2}}&{{b_2}{m_3}} \\\
{{b_3}{m_1}}&{{b_3}{m_2}}&{{b_3}{m_3}}
\end{array}} \right| ………………….. (1)
Now Use The Property of Determinant, ∣kA∣=k∣A∣
Taking a1, a2, a3common from C1, C2, C3 Respectively, We get,
\therefore \left| {\begin{array}{*{20}{c}}
{{a_1}{l_1}}&{{a_1}{l_2}}&{{a_1}{l_3}} \\\
{{a_2}{l_1}}&{{a_2}{l_2}}&{{a_2}{l_3}} \\\
{{a_3}{l_1}}&{{a_3}{l_2}}&{{a_3}{l_3}}
\end{array}} \right| = {a_1}{a_2}{a_3}\left| {\begin{array}{*{20}{c}}
{{l_1}}&{{l_2}}&{{l_3}} \\\
{{l_1}}&{{l_2}}&{{l_3}} \\\
{{l_1}}&{{l_2}}&{{l_3}}
\end{array}} \right| ………………………. (2)
Similarly,
Use The Same Property of Determinant, ∣kA∣=k∣A∣
Taking b1, b2, b3common from C1, C2, C3 Respectively, We get,
\Rightarrow \left| {\begin{array}{*{20}{c}}
{{b_1}{m_1}}&{{b_1}{m_2}}&{{b_1}{m_3}} \\\
{{b_2}{m_1}}&{{b_2}{m_2}}&{{b_2}{m_3}} \\\
{{b_3}{m_1}}&{{b_3}{m_2}}&{{b_3}{m_3}}
\end{array}} \right| = {b_1}{b_2}{b_3}\left| {\begin{array}{*{20}{c}}
{{m_1}}&{{m_2}}&{{m_3}} \\\
{{m_1}}&{{m_2}}&{{m_3}} \\\
{{m_1}}&{{m_2}}&{{m_3}}
\end{array}} \right| …………………… (3)
Put results obtained in equations (2) and (3) in equation (1), We get:
\Rightarrow \Delta = {a_1}{a_2}{a_3}\left| {\begin{array}{*{20}{c}}
{{l_1}}&{{l_2}}&{{l_3}} \\\
{{l_1}}&{{l_2}}&{{l_3}} \\\
{{l_1}}&{{l_2}}&{{l_3}}
\end{array}} \right| + {b_1}{b_2}{b_3}\left| {\begin{array}{*{20}{c}}
{{m_1}}&{{m_2}}&{{m_3}} \\\
{{m_1}}&{{m_2}}&{{m_3}} \\\
{{m_1}}&{{m_2}}&{{m_3}}
\end{array}} \right|Now apply the row transformation in both the determinants, R1→R1−R2 , We get:
\Rightarrow \Delta = {a_1}{a_2}{a_3}\left| {\begin{array}{*{20}{c}}
0&0&0 \\\
{{l_1}}&{{l_2}}&{{l_3}} \\\
{{l_1}}&{{l_2}}&{{l_3}}
\end{array}} \right| + {b_1}{b_2}{b_3}\left| {\begin{array}{*{20}{c}}
0&0&0 \\\
{{m_1}}&{{m_2}}&{{m_3}} \\\
{{m_1}}&{{m_2}}&{{m_3}}
\end{array}} \right|
Now by using the result that if the Row of a determinant is zero then the value of the determinant is Zero.
∴Δ=a1a2a3(0)+b1b2b3(0)
⇒Δ=0= R.H.S.
Hence proved that the value of the determinant \left| {\begin{array}{*{20}{c}} {{a_1}{l_1} + {b_1}{m_1}}&{{a_1}{l_2} + {b_1}{m_2}}&{{a_1}{l_3} + {b_1}{m_3}} \\\ {{a_2}{l_1} + {b_2}{m_1}}&{{a_2}{l_2} + {b_2}{m_2}}&{{a_2}{l_3} + {b_2}{m_3}} \\\ {{a_3}{l_1} + {b_3}{m_1}}&{{a_3}{l_2} + {b_3}{m_2}}&{{a_3}{l_3} + {b_3}{m_3}} \end{array}} \right| is Zero.
Note:
In the above solution, we use a result that if the Row of a determinant is zero then the value of the determinant is Zero.