Solveeit Logo

Question

Question: Show that \(\left| {\begin{array}{*{20}{c}} {{a_1}{l_1} + {b_1}{m_1}}&{{a_1}{l_2} + {b_1}{m_2}}&...

Show that \left| {\begin{array}{*{20}{c}} {{a_1}{l_1} + {b_1}{m_1}}&{{a_1}{l_2} + {b_1}{m_2}}&{{a_1}{l_3} + {b_1}{m_3}} \\\ {{a_2}{l_1} + {b_2}{m_1}}&{{a_2}{l_2} + {b_2}{m_2}}&{{a_2}{l_3} + {b_2}{m_3}} \\\ {{a_3}{l_1} + {b_3}{m_1}}&{{a_3}{l_2} + {b_3}{m_2}}&{{a_3}{l_3} + {b_3}{m_3}} \end{array}} \right| = 0.

Explanation

Solution

Firstly, Try to apply some row and column operations and use properties of the determinant to break the given determinant. Use Simple manipulations like A+B=A+B\left| {A + B} \right| = \left| A \right| + \left| B \right|, kA=kA\left| {kA} \right| = k\left| A \right|, R1R1R2{R_1} \to {R_1} - {R_2}.

Complete step by step solution:
Given,
L.H.S. = \left| {\begin{array}{*{20}{c}} {{a_1}{l_1} + {b_1}{m_1}}&{{a_1}{l_2} + {b_1}{m_2}}&{{a_1}{l_3} + {b_1}{m_3}} \\\ {{a_2}{l_1} + {b_2}{m_1}}&{{a_2}{l_2} + {b_2}{m_2}}&{{a_2}{l_3} + {b_2}{m_3}} \\\ {{a_3}{l_1} + {b_3}{m_1}}&{{a_3}{l_2} + {b_3}{m_2}}&{{a_3}{l_3} + {b_3}{m_3}} \end{array}} \right|
Let \Delta = \left| {\begin{array}{*{20}{c}} {{a_1}{l_1} + {b_1}{m_1}}&{{a_1}{l_2} + {b_1}{m_2}}&{{a_1}{l_3} + {b_1}{m_3}} \\\ {{a_2}{l_1} + {b_2}{m_1}}&{{a_2}{l_2} + {b_2}{m_2}}&{{a_2}{l_3} + {b_2}{m_3}} \\\ {{a_3}{l_1} + {b_3}{m_1}}&{{a_3}{l_2} + {b_3}{m_2}}&{{a_3}{l_3} + {b_3}{m_3}} \end{array}} \right|
Now by Applying Properties of Determinant, A+B=A+B\left| {A + B} \right| = \left| A \right| + \left| B \right|
\Rightarrow \Delta = \left| {\begin{array}{*{20}{c}} {{a_1}{l_1}}&{{a_1}{l_2}}&{{a_1}{l_3}} \\\ {{a_2}{l_1}}&{{a_2}{l_2}}&{{a_2}{l_3}} \\\ {{a_3}{l_1}}&{{a_3}{l_2}}&{{a_3}{l_3}} \end{array}} \right| + \left| {\begin{array}{*{20}{c}} {{b_1}{m_1}}&{{b_1}{m_2}}&{{b_1}{m_3}} \\\ {{b_2}{m_1}}&{{b_2}{m_2}}&{{b_2}{m_3}} \\\ {{b_3}{m_1}}&{{b_3}{m_2}}&{{b_3}{m_3}} \end{array}} \right| ………………….. (1)
Now Use The Property of Determinant, kA=kA\left| {kA} \right| = k\left| A \right|
Taking a1{a_1}, a2{a_2}, a3{a_3}common from C1{C_1}, C2{C_2}, C3{C_3} Respectively, We get,
\therefore \left| {\begin{array}{*{20}{c}} {{a_1}{l_1}}&{{a_1}{l_2}}&{{a_1}{l_3}} \\\ {{a_2}{l_1}}&{{a_2}{l_2}}&{{a_2}{l_3}} \\\ {{a_3}{l_1}}&{{a_3}{l_2}}&{{a_3}{l_3}} \end{array}} \right| = {a_1}{a_2}{a_3}\left| {\begin{array}{*{20}{c}} {{l_1}}&{{l_2}}&{{l_3}} \\\ {{l_1}}&{{l_2}}&{{l_3}} \\\ {{l_1}}&{{l_2}}&{{l_3}} \end{array}} \right| ………………………. (2)
Similarly,
Use The Same Property of Determinant, kA=kA\left| {kA} \right| = k\left| A \right|
Taking b1{b_1}, b2{b_2}, b3{b_3}common from C1{C_1}, C2{C_2}, C3{C_3} Respectively, We get,
\Rightarrow \left| {\begin{array}{*{20}{c}} {{b_1}{m_1}}&{{b_1}{m_2}}&{{b_1}{m_3}} \\\ {{b_2}{m_1}}&{{b_2}{m_2}}&{{b_2}{m_3}} \\\ {{b_3}{m_1}}&{{b_3}{m_2}}&{{b_3}{m_3}} \end{array}} \right| = {b_1}{b_2}{b_3}\left| {\begin{array}{*{20}{c}} {{m_1}}&{{m_2}}&{{m_3}} \\\ {{m_1}}&{{m_2}}&{{m_3}} \\\ {{m_1}}&{{m_2}}&{{m_3}} \end{array}} \right| …………………… (3)
Put results obtained in equations (2) and (3) in equation (1), We get:
\Rightarrow \Delta = {a_1}{a_2}{a_3}\left| {\begin{array}{*{20}{c}} {{l_1}}&{{l_2}}&{{l_3}} \\\ {{l_1}}&{{l_2}}&{{l_3}} \\\ {{l_1}}&{{l_2}}&{{l_3}} \end{array}} \right| + {b_1}{b_2}{b_3}\left| {\begin{array}{*{20}{c}} {{m_1}}&{{m_2}}&{{m_3}} \\\ {{m_1}}&{{m_2}}&{{m_3}} \\\ {{m_1}}&{{m_2}}&{{m_3}} \end{array}} \right|Now apply the row transformation in both the determinants, R1R1R2{R_1} \to {R_1} - {R_2} , We get:
\Rightarrow \Delta = {a_1}{a_2}{a_3}\left| {\begin{array}{*{20}{c}} 0&0&0 \\\ {{l_1}}&{{l_2}}&{{l_3}} \\\ {{l_1}}&{{l_2}}&{{l_3}} \end{array}} \right| + {b_1}{b_2}{b_3}\left| {\begin{array}{*{20}{c}} 0&0&0 \\\ {{m_1}}&{{m_2}}&{{m_3}} \\\ {{m_1}}&{{m_2}}&{{m_3}} \end{array}} \right|
Now by using the result that if the Row of a determinant is zero then the value of the determinant is Zero.
Δ=a1a2a3(0)+b1b2b3(0)\therefore \Delta = {a_1}{a_2}{a_3}(0) + {b_1}{b_2}{b_3}(0)
Δ=0\Rightarrow \Delta = 0= R.H.S.

Hence proved that the value of the determinant \left| {\begin{array}{*{20}{c}} {{a_1}{l_1} + {b_1}{m_1}}&{{a_1}{l_2} + {b_1}{m_2}}&{{a_1}{l_3} + {b_1}{m_3}} \\\ {{a_2}{l_1} + {b_2}{m_1}}&{{a_2}{l_2} + {b_2}{m_2}}&{{a_2}{l_3} + {b_2}{m_3}} \\\ {{a_3}{l_1} + {b_3}{m_1}}&{{a_3}{l_2} + {b_3}{m_2}}&{{a_3}{l_3} + {b_3}{m_3}} \end{array}} \right| is Zero.

Note:
In the above solution, we use a result that if the Row of a determinant is zero then the value of the determinant is Zero.