Solveeit Logo

Question

Question: Show that \(\left| {\begin{array}{*{20}{c}} 1&{yz}&{y + z} \\\ 1&{zx}&{z + x} \\\ 1&{x...

Show that \left| {\begin{array}{*{20}{c}} 1&{yz}&{y + z} \\\ 1&{zx}&{z + x} \\\ 1&{xy}&{x + y} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} 1&x;&{{x^2}} \\\ 1&y;&{{y^2}} \\\ 1&z;&{{z^2}} \end{array}} \right|.

Explanation

Solution

First take the L.H.S. and subtract row 1 (R1{R_1}) from row 2 (R2{R_2}) and row 3 (R3{R_3}). After that, take common from row 2 (R2{R_2}) and row 3 (R3{R_3}). Now, solve the determinant along column 1 (C1{C_1}). Then, take the R.H.S. and subtract r and subtract row 1 (R1{R_1}) from row 2 (R2{R_2}) and row 3 (R3{R_3}). After that, take common from row 2 (R2{R_2}) and row 3 (R3{R_3}). Now, solve the determinant along column 1 (C1{C_1}). Now check if the value of L.H.S. is equal to R.H.S. or not.

Complete step-by-step answer:
Take L.H.S. and simplify it.
\left| {\begin{array}{*{20}{c}} 1&{yz}&{y + z} \\\ 1&{zx}&{z + x} \\\ 1&{xy}&{x + y} \end{array}} \right|
Subtract row 1 from row 2 and row 3,
R2R2R1 R3R3R1 \begin{gathered} {R_2} \to {R_2} - {R_1} \\\ {R_3} \to {R_3} - {R_1} \\\ \end{gathered}
\left| {\begin{array}{*{20}{c}} 1&{yz}&{y + z} \\\ 0&{zx - yz}&{\left( {z + x} \right) - \left( {y + z} \right)} \\\ 0&{xy - yz}&{\left( {x + y} \right) - \left( {y + z} \right)} \end{array}} \right|
Take zz common from 2nd column of 2nd row, yy from 2nd column of 3rd row and simplify the 3rd column,
\left| {\begin{array}{*{20}{c}} 1&{yz}&{y + z} \\\ 0&{z\left( {x - y} \right)}&{x - y} \\\ 0&{y\left( {x - z} \right)}&{x - z} \end{array}} \right|
Take out (xy)\left( {x - y} \right) common from 2nd row and (xz)\left( {x - z} \right) from 3rd row.
\left( {x - y} \right)\left( {x - z} \right)\left| {\begin{array}{*{20}{c}} 1&{yz}&{y + z} \\\ 0&z;&1 \\\ 0&y;&1 \end{array}} \right|
Solve the determinant along the first column (C1{C_1}),
\left( {x - y} \right)\left( {x - z} \right)\left[ {1\left( {\left| {\begin{array}{*{20}{c}} z&1 \\\ y&1 \end{array}} \right|} \right) - 0 + 0} \right]
Solve the determinant inside the bracket,
(xy)(xz)(zy)\left( {x - y} \right)\left( {x - z} \right)\left( {z - y} \right) ….. (1)
Now, take L.H.S. and simplify it.
\left| {\begin{array}{*{20}{c}} 1&x;&{{x^2}} \\\ 1&y;&{{y^2}} \\\ 1&z;&{{z^2}} \end{array}} \right|
Subtract row 1 from row 2 and row 3,
R2R2R1 R3R3R1 \begin{gathered} {R_2} \to {R_2} - {R_1} \\\ {R_3} \to {R_3} - {R_1} \\\ \end{gathered}
\left| {\begin{array}{*{20}{c}} 1&x;&{{x^2}} \\\ 0&{y - x}&{{y^2} - {x^2}} \\\ 0&{z - x}&{{z^2} - {x^2}} \end{array}} \right|
Take out (yx)\left( {y - x} \right) common from 2nd row and (zx)\left( {z - x} \right) from 3rd row.
\left( {y - x} \right)\left( {z - x} \right)\left| {\begin{array}{*{20}{c}} 1&x;&{{x^2}} \\\ 0&1&{y + x} \\\ 0&1&{z + x} \end{array}} \right|
Solve the determinant along the first column (C1{C_1}),
\left( {y - x} \right)\left( {z - x} \right)\left[ {1\left( {\left| {\begin{array}{*{20}{c}} 1&{y + x} \\\ 1&{z + x} \end{array}} \right|} \right) - 0 + 0} \right]
Solve the determinant inside the bracket,
(xy)(xz)[(z+x)(y+x)]\left( {x - y} \right)\left( {x - z} \right)\left[ {\left( {z + x} \right) - \left( {y + x} \right)} \right]
Solve the variables inside the bracket,
(xy)(xz)(zy)\left( {x - y} \right)\left( {x - z} \right)\left( {z - y} \right) ….. (2)
Since the value of equation (1) and (2) are equal.
Hence, \left| {\begin{array}{*{20}{c}} 1&{yz}&{y + z} \\\ 1&{zx}&{z + x} \\\ 1&{xy}&{x + y} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} 1&x;&{{x^2}} \\\ 1&y;&{{y^2}} \\\ 1&z;&{{z^2}} \end{array}} \right|.

Note: Determinant, in linear and multilinear algebra, a value, denoted det A, associated with a square matrix A of n rows and n columns.
The determinant of a matrix A is commonly denoted det(A) or |A|
A k×kk \times k determinant \left| {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1k}}} \\\ {{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2k}}} \\\ \vdots & \vdots & \ddots & \vdots \\\ {{a_{k1}}}&{{a_{k2}}}& \cdots &{{a_{kk}}} \end{array}} \right| can be expanded "by minors" to obtain

{{a_{22}}}&{{a_{23}}}& \cdots &{{a_{2k}}} \\\ \vdots & \vdots & \ddots & \vdots \\\ {{a_{k2}}}&{{a_{k3}}}& \cdots &{{a_{kk}}} \end{array}} \right| - {a_{12}}\left| {\begin{array}{*{20}{c}} {{a_{21}}}&{{a_{23}}}& \cdots &{{a_{2k}}} \\\ \vdots & \vdots & \ddots & \vdots \\\ {{a_{k1}}}&{{a_{k3}}}& \cdots &{{a_{kk}}} \end{array}} \right| + \ldots \pm {a_{1k}}\left| {\begin{array}{*{20}{c}} {{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2\left( {k - 1} \right)}}} \\\ \vdots & \vdots & \ddots & \vdots \\\ {{a_{k1}}}&{{a_{k2}}}& \cdots &{{a_{k\left( {k - 1} \right)}}} \end{array}} \right|$$