Question
Question: Show that \(\left| {\begin{array}{*{20}{c}} 1&{yz}&{y + z} \\\ 1&{zx}&{z + x} \\\ 1&{x...
Show that \left| {\begin{array}{*{20}{c}} 1&{yz}&{y + z} \\\ 1&{zx}&{z + x} \\\ 1&{xy}&{x + y} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} 1&x;&{{x^2}} \\\ 1&y;&{{y^2}} \\\ 1&z;&{{z^2}} \end{array}} \right|.
Solution
First take the L.H.S. and subtract row 1 (R1) from row 2 (R2) and row 3 (R3). After that, take common from row 2 (R2) and row 3 (R3). Now, solve the determinant along column 1 (C1). Then, take the R.H.S. and subtract r and subtract row 1 (R1) from row 2 (R2) and row 3 (R3). After that, take common from row 2 (R2) and row 3 (R3). Now, solve the determinant along column 1 (C1). Now check if the value of L.H.S. is equal to R.H.S. or not.
Complete step-by-step answer:
Take L.H.S. and simplify it.
\left| {\begin{array}{*{20}{c}}
1&{yz}&{y + z} \\\
1&{zx}&{z + x} \\\
1&{xy}&{x + y}
\end{array}} \right|
Subtract row 1 from row 2 and row 3,
R2→R2−R1 R3→R3−R1
\left| {\begin{array}{*{20}{c}}
1&{yz}&{y + z} \\\
0&{zx - yz}&{\left( {z + x} \right) - \left( {y + z} \right)} \\\
0&{xy - yz}&{\left( {x + y} \right) - \left( {y + z} \right)}
\end{array}} \right|
Take z common from 2nd column of 2nd row, y from 2nd column of 3rd row and simplify the 3rd column,
\left| {\begin{array}{*{20}{c}}
1&{yz}&{y + z} \\\
0&{z\left( {x - y} \right)}&{x - y} \\\
0&{y\left( {x - z} \right)}&{x - z}
\end{array}} \right|
Take out (x−y) common from 2nd row and (x−z) from 3rd row.
\left( {x - y} \right)\left( {x - z} \right)\left| {\begin{array}{*{20}{c}}
1&{yz}&{y + z} \\\
0&z;&1 \\\
0&y;&1
\end{array}} \right|
Solve the determinant along the first column (C1),
\left( {x - y} \right)\left( {x - z} \right)\left[ {1\left( {\left| {\begin{array}{*{20}{c}}
z&1 \\\
y&1
\end{array}} \right|} \right) - 0 + 0} \right]
Solve the determinant inside the bracket,
(x−y)(x−z)(z−y) ….. (1)
Now, take L.H.S. and simplify it.
\left| {\begin{array}{*{20}{c}}
1&x;&{{x^2}} \\\
1&y;&{{y^2}} \\\
1&z;&{{z^2}}
\end{array}} \right|
Subtract row 1 from row 2 and row 3,
R2→R2−R1 R3→R3−R1
\left| {\begin{array}{*{20}{c}}
1&x;&{{x^2}} \\\
0&{y - x}&{{y^2} - {x^2}} \\\
0&{z - x}&{{z^2} - {x^2}}
\end{array}} \right|
Take out (y−x) common from 2nd row and (z−x) from 3rd row.
\left( {y - x} \right)\left( {z - x} \right)\left| {\begin{array}{*{20}{c}}
1&x;&{{x^2}} \\\
0&1&{y + x} \\\
0&1&{z + x}
\end{array}} \right|
Solve the determinant along the first column (C1),
\left( {y - x} \right)\left( {z - x} \right)\left[ {1\left( {\left| {\begin{array}{*{20}{c}}
1&{y + x} \\\
1&{z + x}
\end{array}} \right|} \right) - 0 + 0} \right]
Solve the determinant inside the bracket,
(x−y)(x−z)[(z+x)−(y+x)]
Solve the variables inside the bracket,
(x−y)(x−z)(z−y) ….. (2)
Since the value of equation (1) and (2) are equal.
Hence, \left| {\begin{array}{*{20}{c}}
1&{yz}&{y + z} \\\
1&{zx}&{z + x} \\\
1&{xy}&{x + y}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&x;&{{x^2}} \\\
1&y;&{{y^2}} \\\
1&z;&{{z^2}}
\end{array}} \right|.
Note: Determinant, in linear and multilinear algebra, a value, denoted det A, associated with a square matrix A of n rows and n columns.
The determinant of a matrix A is commonly denoted det(A) or |A|
A k×k determinant \left| {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1k}}} \\\
{{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2k}}} \\\
\vdots & \vdots & \ddots & \vdots \\\
{{a_{k1}}}&{{a_{k2}}}& \cdots &{{a_{kk}}}
\end{array}} \right| can be expanded "by minors" to obtain