Question
Question: Show that \(\int{\csc xdx}=\ln \left| \tan \left( \dfrac{x}{2} \right) \right|+c\)?...
Show that ∫cscxdx=lntan(2x)+c?
Solution
We first change the given expression of cscx to (cscx−cotx)cscx(cscx−cotx) by multiplying (cscx−cotx) to both its numerator and denominator. We change the variable from the assumption of (cscx−cotx)=z. The differential gives (csc2x−cotxcscx)dx=dz. We change the function and find the solution of the integral. We then sue the formulas of submultiple 1−cosx=2sin22x and sinx=2sin2xcos2x to get the final solution.
Complete step by step answer:
We first change the given function of cscx to (cscx−cotx)cscx(cscx−cotx) by multiplying (cscx−cotx) to both its numerator and denominator.
We get cscx=(cscx−cotx)cscx(cscx−cotx)=(cscx−cotx)csc2x−cscxcotx.
We take (cscx−cotx)=z.
Differentiating we get
(cscx−cotx)=z⇒(csc2x−cotxcscx)dx=dz
So, we get