Solveeit Logo

Question

Mathematics Question on integral

Show that 0a\int_{0}^{a}ƒ(x)g(x)dx=20a\int_{0}^{a}ƒ(x)dx,if f and g are defined as ƒ(x)=ƒ(a-x)and g(x)+g(a-x)=4

Answer

Let I=0a\int_{0}^{a}ƒ(x)g(x)dx...(1)

⇒I=0a\int_{0}^{a}ƒ(a-x)g(a-x)dx) (0a\int_{0}^{a}ƒ(x)dx=0a\int_{0}^{a}ƒ(a-x)dx)

⇒I=0a\int_{0}^{a}ƒ(x)g(a-x)dx...(2)

Adding(1)and(2),we obtain

2I=0a\int_{0}^{a}{ƒ(x)g(x)+ƒ(x)g(a-x)}dx

⇒2I=0a\int_{0}^{a}ƒ(x){g(x)+g(a-x)}dx

⇒2I=0a\int_{0}^{a}ƒ(x)×4dx [g(x)+g(a-x)=4]

⇒I=20a\int_{0}^{a}ƒ(x)dx