Question
Mathematics Question on integral
Show that ∫0aƒ(x)g(x)dx=2∫0aƒ(x)dx,if f and g are defined as ƒ(x)=ƒ(a-x)and g(x)+g(a-x)=4
Answer
Let I=∫0aƒ(x)g(x)dx...(1)
⇒I=∫0aƒ(a-x)g(a-x)dx) (∫0aƒ(x)dx=∫0aƒ(a-x)dx)
⇒I=∫0aƒ(x)g(a-x)dx...(2)
Adding(1)and(2),we obtain
2I=∫0a{ƒ(x)g(x)+ƒ(x)g(a-x)}dx
⇒2I=∫0aƒ(x){g(x)+g(a-x)}dx
⇒2I=∫0aƒ(x)×4dx [g(x)+g(a-x)=4]
⇒I=2∫0aƒ(x)dx