Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height hh and semi vertical angle αα is one-third that of the cone and the greatest volume of cylinder is 427πh3tan2α\frac{4}{27}πh^3 \,tan^2α

Answer

The given right circular cone of fixed height (h)(h) and semi-vertical angle (α)(α) can be drawn as:
Here, a cylinder of radius RR and height HH is inscribed in the cone.
Then, GAO=α,OG=r,OA=h,OE=R∴GAO=α, OG=r,OA=h,OE=R, and CE=H.CE=H.
We have,r=htanαr=h\,tanα
Now, since AOG∆AOG is similar to CEG∆CEG, we have:
AOOG=CEEG\frac{AO}{OG}=\frac{CE}{EG}
hr=HrR[EG=OGOE]⇒\frac{h}{r}=\frac{H}{r-R}\,\,\,\, [EG=OG-OE]
H=hr(rR)⇒H=\frac{h}{r}(r-R)
=hhtanα(htanαR)=\frac{h}{h\,tanα}(h\,tanα-R)
=1tanα(htanαR)=\frac{1}{tanα}(h\,tanα-R)
Now, the volume (V)(V) of the cylinder is given by,
V=πR2H=πR2tanα(htanαR)V=πR^2H=\frac{πR^2}{tanα}(h\,tanα-R)
=πR2hπR3tanα=πR^2h-\frac{πR^3}{tanα}
dVdR=2πRh3πR2tanα∴\frac{dV}{dR}=2πRh-\frac{3πR^2}{tanα}
Now dVdR=0\frac{dV}{dR}=0
2πRh=3πR2tanα⇒2πRh=\frac{3πR^2}{tanα}
2htanα=3R⇒2h\,tanα=3R
R=2h3tanα⇒R=\frac{2h}{3}tanα
Now,d2VdR2=2πh6πRtanα\frac{d^2V}{dR^2}=2πh-\frac{6πR}{tanα}
And for R=2h3tanαR=\frac{2h}{3tanα},we have
d2VdR2=2πh6πtanα(2h3tanα)\frac{d^2V}{dR^2}=2πh-\frac{6π}{tanα}(\frac{2h}{3}tanα)
=2πh4πh=2πh<0=2πh-4πh=-2πh<0
∴By second derivative test, the volume of the cylinder is the greatest when
R=2h3tanαR=\frac{2h}{3}tanα
When R=2h3tanα,H=1tanα(htanα2h3tanα)R=\frac{2h}{3}tanα,H=\frac{1}{tanα}(htanα-\frac{2h}{3}tanα)
=1tanα(htanα3)=h3=\frac{1}{tanα}(\frac{h\,tanα}{3})=\frac{h}{3}
Thus, the height of the cylinder is one-third the height of the cone when the volume of the cylinder is the greatest.
Now, the maximum volume of the cylinder can be obtained as:
π(2h3tanα)2(h3)=π(4h29tan2α)(h3)π(\frac{2h}{3}tanα)^2(\frac{h}{3})=π(\frac{4h^2}{9}tan^2α)(\frac{h}{3})
=427πh3tan2α=\frac{4}{27}πh^3tan^2α
Hence, the given result is proved