Solveeit Logo

Question

Mathematics Question on Subsets

Show that for any sets A and B, A=(AB)(AB)A = (A ∩ B) ∪ (A – B) and A(BA)=(AB)A ∪ (B – A) = (A ∪ B)

Answer

To show: A=(AB)(AB)A = (A ∩ B) ∪ (A – B)
Let xAx ∈ A
We have to show that x(AB)(AB)x ∈ (A ∩ B) ∪ (A – B)

**Case I **xABx ∈ A ∩ B
Then, x(AB)(AB)(AB)x ∈ (A ∩ B) ⊂ (A ∪ B) ∪ (A – B)

Case II xABx ∉ A ∩ B
xAorxB⇒ x ∉ A or x ∉ B
xB[xA]∴ x ∉ B [x ∉ A]
xAB(AB)(AB)∴ x ∉ A – B ⊂ (A ∪ B) ∪ (A – B)
A(AB)(AB)(1)∴ A ⊂ (A ∩ B) ∪ (A – B) … (1)
It is clear that
ABAA ∩ B ⊂ A and (AB)A(A – B) ⊂ A
(AB)(AB)A(2)∴ (A ∩ B) ∪ (A – B) ⊂ A … (2)
From (1) and (2), we obtain
A=(AB)(AB)A = (A ∩ B) ∪ (A – B)

To prove: A(BA)ABA ∪ (B – A) ⊂ A ∪ B
Let xA(BA)x ∈ A ∪ (B – A)
xA⇒ x ∈ A or x(BA)x ∈ (B – A)
xA⇒ x ∈ A or (xB  and  xA)(x ∈ B \space and \space x ∉ A)
(xA  orxB)⇒ (x ∈ A \space or x ∈ B) and (xA  orxA)(x ∈ A \space or x ∉ A)
x(AB)⇒ x ∈ (A ∪ B)
A(BA)(AB)(3)∴ A ∪ (B – A) ⊂ (A ∪ B) … (3)
Next, we show that (AB)A(BA).(A ∪ B) ⊂ A ∪ (B – A).
Let yABy ∈ A ∪ B
yA  or  yB⇒ y ∈ A \space or\space y ∈ B
(yA⇒ (y ∈ A or yB)y ∈ B) and(y(y ∈A or yA)y ∉ A)
yA⇒ y ∈ A or (yB(y ∈ B and yA)y ∉ A)
yA(BA)⇒ y ∈ A ∪ (B – A)
ABA(BA)(4)∴ A ∪ B ⊂ A ∪ (B – A) … (4)

Hence, from (3) and (4), we obtain A(BA)=AB.A ∪ (B – A) = A ∪B.