Question
Mathematics Question on Subsets
Show that for any sets A and B, A=(A∩B)∪(A–B) and A∪(B–A)=(A∪B)
Answer
To show: A=(A∩B)∪(A–B)
Let x∈A
We have to show that x∈(A∩B)∪(A–B)
**Case I **x∈A∩B
Then, x∈(A∩B)⊂(A∪B)∪(A–B)
Case II x∈/A∩B
⇒x∈/Aorx∈/B
∴x∈/B[x∈/A]
∴x∈/A–B⊂(A∪B)∪(A–B)
∴A⊂(A∩B)∪(A–B)…(1)
It is clear that
A∩B⊂A and (A–B)⊂A
∴(A∩B)∪(A–B)⊂A…(2)
From (1) and (2), we obtain
A=(A∩B)∪(A–B)
To prove: A∪(B–A)⊂A∪B
Let x∈A∪(B–A)
⇒x∈A or x∈(B–A)
⇒x∈A or (x∈Bandx∈/A)
⇒(x∈Aorx∈B) and (x∈Aorx∈/A)
⇒x∈(A∪B)
∴A∪(B–A)⊂(A∪B)…(3)
Next, we show that (A∪B)⊂A∪(B–A).
Let y∈A∪B
⇒y∈Aory∈B
⇒(y∈A or y∈B) and(y∈A or y∈/A)
⇒y∈A or (y∈B and y∈/A)
⇒y∈A∪(B–A)
∴A∪B⊂A∪(B–A)…(4)
Hence, from (3) and (4), we obtain A∪(B–A)=A∪B.