Solveeit Logo

Question

Mathematics Question on Vector Algebra

Show that each of the given three vectors is a unit vector:
17(2i^+3j^+6k^),17(3i^6j^+2k^),17(6i^+2j^3k^)\frac{1}{7}(2\hat{i}+3\hat{j}+6\hat{k}),\frac{1}{7}(3\hat{i}-6\hat{j}+2\hat{k}),\frac{1}{7}(6\hat{i}+2\hat{j}-3\hat{k})
Also show that they are mutually perpendicular to each other.

Answer

Let \vec{a}=\frac{1}{7}(2\hat{i}+3\hat{j}+6\hat{k})$$=\frac{2}{7}\hat{i}+\frac{3}{7}\hat{j}+\frac{6}{7}\hat{k}
\vec{b}=\frac{1}{7}(3\hat{i}-6\hat{j}+2\hat{k})$$=\frac{3}{7}\hat{i}-\frac{6}{7}\hat{j}+\frac{2}{7}\hat{k}
\vec{c}=\frac{1}{7}(6\hat{i}+2\hat{j}-3\hat{k})$$=\frac{6}{7}\hat{i}+\frac{2}{7}\hat{j}-\frac{3}{7}\hat{k}.
a=(27)2+(37)2+(67)2=449+949+3649=1|\vec{a}|=\sqrt{(\frac{2}{7})^2+(\frac{3}{7})^2+(\frac{6}{7})^2}=\sqrt{\frac{4}{49}+\frac{9}{49}+\frac{36}{49}}=1
b=(37)2+(67)2+(27)2=949+3649+449=1|\vec{b}|=\sqrt{(\frac{3}{7})^2+(\frac{6}{7})^2+(\frac{2}{7})^2}=\sqrt{\frac{9}{49}+\frac{36}{49}+\frac{4}{49}}=1
c=(67)2+(27)2+(37)2=3649+449+949=1|\vec{c}|=\sqrt{(\frac{6}{7})^2+(\frac{2}{7})^2+(\frac{3}{7})^2}=\sqrt{\frac{36}{49}+\frac{4}{49}+\frac{9}{49}}=1
Thus,each of the given three vectors is a unit vector.
a.b=27×37+37×(67)+67×27=6491849+1249=0\vec{a}.\vec{b}=\frac{2}{7}×\frac{3}{7}+\frac{3}{7}×(\frac{-6}{7})+\frac{6}{7}×\frac{2}{7}=\frac{6}{49}-\frac{18}{49}+\frac{12}{49}=0
b.c=37×67+67×(27)+27×37=18491249+649=0\vec{b}.\vec{c}=\frac{3}{7}×\frac{6}{7}+\frac{-6}{7}×(\frac{2}{7})+\frac{2}{7}×\frac{-3}{7}=\frac{18}{49}-\frac{12}{49}+\frac{6}{49}=0
c.a=67×27+27×(37)+37×67=1249649+1849=0\vec{c}.\vec{a}=\frac{6}{7}×\frac{2}{7}+\frac{2}{7}×(\frac{3}{7})+\frac{-3}{7}×\frac{6}{7}=\frac{12}{49}-\frac{6}{49}+\frac{18}{49}=0
Hence the given three vectors are mutually perpendicular to each other.