Question
Mathematics Question on Vector Algebra
Show that each of the given three vectors is a unit vector:
71(2i^+3j^+6k^),71(3i^−6j^+2k^),71(6i^+2j^−3k^)
Also show that they are mutually perpendicular to each other.
Let \vec{a}=\frac{1}{7}(2\hat{i}+3\hat{j}+6\hat{k})$$=\frac{2}{7}\hat{i}+\frac{3}{7}\hat{j}+\frac{6}{7}\hat{k}
\vec{b}=\frac{1}{7}(3\hat{i}-6\hat{j}+2\hat{k})$$=\frac{3}{7}\hat{i}-\frac{6}{7}\hat{j}+\frac{2}{7}\hat{k}
\vec{c}=\frac{1}{7}(6\hat{i}+2\hat{j}-3\hat{k})$$=\frac{6}{7}\hat{i}+\frac{2}{7}\hat{j}-\frac{3}{7}\hat{k}.
∣a∣=(72)2+(73)2+(76)2=494+499+4936=1
∣b∣=(73)2+(76)2+(72)2=499+4936+494=1
∣c∣=(76)2+(72)2+(73)2=4936+494+499=1
Thus,each of the given three vectors is a unit vector.
a.b=72×73+73×(7−6)+76×72=496−4918+4912=0
b.c=73×76+7−6×(72)+72×7−3=4918−4912+496=0
c.a=76×72+72×(73)+7−3×76=4912−496+4918=0
Hence the given three vectors are mutually perpendicular to each other.