Question
Question: Show that: \(\dfrac{{\sin (A - B)}}{{\cos A\cos B}} + \dfrac{{\sin (B - C)}}{{\cos B\cos C}} + \dfra...
Show that: cosAcosBsin(A−B)+cosBcosCsin(B−C)+cosCcosAsin(C−A)=0
Solution
Hint : 1. The expansion of sin(A-B) can be written as
sin(A−B)=sinAcosB−cosAsinB
2. cosAsinA=tanA
Complete step-by-step answer :
1. We are provided with the expression
cosAcosBsin(A−B)+cosBcosCsin(B−C)+cosCcosAsin(C−A)
2. Applying the expansion of sin(A-B) in the above expression, we will get
cosAcosBsinAcosB−cosAsinB+cosBcosCsinBcosC−cosBsinC+cosCcosAsinCcosA−cosCsinA
3. Since the denominator is common, now splitting the numerator and we will get
cosAcosBsinAcosB−cosAcosBcosAsinB+cosBcosCsinBcosC−cosBcosCcosBsinC+cosCcosAsinCcosA−cosCcosAcosCsinA
4. Eliminating the term which are same in numerator and denominator, and we will get
cosAsinA−cosBsinB+cosBsinB−cosCsinC+cosCsinC−cosAsinA
5 Now, since we knowcosAsinA=tanA. Applying this in the above expression
i.e. tanA−tanB+tanB−tanC+tanC−tanA=0
Hence, proved that
cosAcosBsin(A−B)+cosBcosCsin(B−C)+cosCcosAsin(C−A)=0
Note : Point to be considered in the above question is that when we are provided a number in the fractional form, and the numerator can be splitted into two parts while keeping the denominator the same.