Solveeit Logo

Question

Question: Show that \[\dfrac{{{{\sin }^3}({{180}^ \circ } + A)\tan ({{360}^ \circ } - A){{\sec }^2}({{180}^ \c...

Show that sin3(180+A)tan(360A)sec2(180A)cos2(90+A)cosec2Asin(180A)=tan3A\dfrac{{{{\sin }^3}({{180}^ \circ } + A)\tan ({{360}^ \circ } - A){{\sec }^2}({{180}^ \circ } - A)}}{{{{\cos }^2}({{90}^ \circ } + A)\cos e{c^2}A\sin ({{180}^ \circ } - A)}} = {\tan ^3}A

Explanation

Solution

We use the quadrant diagram to find the value of each term in the numerator as well as denominator. Write all values with the same angle ‘A’ and convert all trigonometric functions in simpler forms of ‘sine’ and ‘cosine’.

  • secx=1cosx;cosecx=1sinx;tanx=sinxcosx\sec x = \dfrac{1}{{\cos x}};\cos ecx = \dfrac{1}{{\sin x}};\tan x = \dfrac{{\sin x}}{{\cos x}}
  • We know the values of all trigonometric angles are positive in the first quadrant.
    Values of only sinθ\sin \theta are positive in the second quadrant.
    Values of only tanθ\tan \theta are positive in the third quadrant.
    Values of only cosθ\cos \theta are positive in the fourth quadrant.

Complete step-by-step answer:
We have to prove sin3(180+A)tan(360A)sec2(180A)cos2(90+A)cosec2Asin(180A)=tan3A\dfrac{{{{\sin }^3}({{180}^ \circ } + A)\tan ({{360}^ \circ } - A){{\sec }^2}({{180}^ \circ } - A)}}{{{{\cos }^2}({{90}^ \circ } + A)\cos e{c^2}A\sin ({{180}^ \circ } - A)}} = {\tan ^3}A
We solve for all the trigonometric terms separately.
Terms of numerator:
Since we can writesin3(180+A)=[sin(180+A)]3{\sin ^3}({180^ \circ } + A) = {\left[ {\sin ({{180}^ \circ } + A)} \right]^3}
We will change the angle associated with sine.
Since 180+{180^ \circ } + goes to the third quadrant where all tan\tan angles are positive, so all sin\sin angles are negative.
sin3(180+A)=[sinA]3\Rightarrow {\sin ^3}({180^ \circ } + A) = {\left[ { - \sin A} \right]^3}
sin3(180+A)=sin3A\Rightarrow {\sin ^3}({180^ \circ } + A) = - {\sin ^3}A
We have next term astan(360A)\tan ({360^ \circ } - A)
We will change the angle associated with tan.
Since 360{360^ \circ } - goes to the fourth quadrant where all cos\cos angles are positive, so all tan\tan angles are negative.
tan(360A)=tanA\Rightarrow \tan ({360^ \circ } - A) = - \tan A
Since we can writesec2(180A)=[sec(180A)]2{\sec ^2}({180^ \circ } - A) = {\left[ {\sec ({{180}^ \circ } - A)} \right]^2}
We will change the angle associated with secant.
Since 180{180^ \circ } - goes to the second quadrant where all sin\sin angles are positive, so all sec\sec angles are negative.
sec2(180A)=[secA]2\Rightarrow {\sec ^2}({180^ \circ } - A) = {\left[ { - \sec A} \right]^2}
sec2(180A)=sec2A\Rightarrow {\sec ^2}({180^ \circ } - A) = {\sec ^2}A
So the numerator sin3(180+A)tan(360A)sec2(180A)=(sin3A)(tanA)sec2A{\sin ^3}({180^ \circ } + A)\tan ({360^ \circ } - A){\sec ^2}({180^ \circ } - A) = ( - {\sin ^3}A)( - \tan A){\sec ^2}A
Multiply negative signs together to give a positive sign
sin3(180+A)tan(360A)sec2(180A)=sin3AtanAsec2A\Rightarrow {\sin ^3}({180^ \circ } + A)\tan ({360^ \circ } - A){\sec ^2}({180^ \circ } - A) = {\sin ^3}A\tan A{\sec ^2}A...............… (1)
Terms of denominator:
Since we can writecos2(90+A)=[cos(90+A)]2{\cos ^2}({90^ \circ } + A) = {\left[ {\cos ({{90}^ \circ } + A)} \right]^2}
We will change the angle associated with cosine.
Since we know cos(90+A)=sinA\cos ({90^ \circ } + A) = - \sin A
Since 90+{90^ \circ } + goes to the third quadrant where all tan\tan angles are positive, so all sin\sin angles are negative.
cos2(90+A)=[sinA]2\Rightarrow {\cos ^2}({90^ \circ } + A) = {\left[ { - \sin A} \right]^2}
cos2(90+A)=sin2A\Rightarrow {\cos ^2}({90^ \circ } + A) = {\sin ^2}A
We have next term assin(180A)\sin ({180^ \circ } - A)
We will change the angle associated with sine.
Since 180{180^ \circ } - goes to the second quadrant where all sin\sin angles are positive.
sin(180A)=sinA\Rightarrow \sin ({180^ \circ } - A) = \sin A
So the denominator cos2(90+A)cosec2Asin(180A)=(sinA)cosec2AsinA{\cos ^2}({90^ \circ } + A)\cos e{c^2}A\sin ({180^ \circ } - A) = ( - \sin A)\cos e{c^2}A\sin A
cos2(90+A)cosec2Asin(180A)=sinAcosec2AsinA\Rightarrow {\cos ^2}({90^ \circ } + A)\cos e{c^2}A\sin ({180^ \circ } - A) = - \sin A\cos e{c^2}A\sin A...............… (2)
Now we substitute the value of numerator from equation (1) and denominator from equation (2) in the LHS of the equation given in the question.
sin3(180+A)tan(360A)sec2(180A)cos2(90+A)cosec2Asin(180A)=sin3AtanAsec2Asin2Acosec2AsinA\Rightarrow \dfrac{{{{\sin }^3}({{180}^ \circ } + A)\tan ({{360}^ \circ } - A){{\sec }^2}({{180}^ \circ } - A)}}{{{{\cos }^2}({{90}^ \circ } + A)\cos e{c^2}A\sin ({{180}^ \circ } - A)}} = \dfrac{{{{\sin }^3}A\tan A{{\sec }^2}A}}{{{{\sin }^2}A\cos e{c^2}A\sin A}}.................… (3)
Now we simplify the term by substituting the values of trigonometric functions in terms of sine and cosine.
Substitute secx=1cosx;cosecx=1sinx;tanx=sinxcosx\sec x = \dfrac{1}{{\cos x}};\cos ecx = \dfrac{1}{{\sin x}};\tan x = \dfrac{{\sin x}}{{\cos x}}
sin3(180+A)tan(360A)sec2(180A)cos2(90+A)cosec2Asin(180A)=(sin3A)(sinAcosA)(1cos2A)(sin2A)(1sin2A)(sinA)\Rightarrow \dfrac{{{{\sin }^3}({{180}^ \circ } + A)\tan ({{360}^ \circ } - A){{\sec }^2}({{180}^ \circ } - A)}}{{{{\cos }^2}({{90}^ \circ } + A)\cos e{c^2}A\sin ({{180}^ \circ } - A)}} = \dfrac{{\left( {{{\sin }^3}A} \right)\left( {\dfrac{{\sin A}}{{\cos A}}} \right)\left( {\dfrac{1}{{{{\cos }^2}A}}} \right)}}{{\left( {{{\sin }^2}A} \right)\left( {\dfrac{1}{{{{\sin }^2}A}}} \right)\left( {\sin A} \right)}}
sin3(180+A)tan(360A)sec2(180A)cos2(90+A)cosec2Asin(180A)=sin3A×sinA×sin2Asin2A×sinA×cosA×cos2A\Rightarrow \dfrac{{{{\sin }^3}({{180}^ \circ } + A)\tan ({{360}^ \circ } - A){{\sec }^2}({{180}^ \circ } - A)}}{{{{\cos }^2}({{90}^ \circ } + A)\cos e{c^2}A\sin ({{180}^ \circ } - A)}} = \dfrac{{{{\sin }^3}A \times \sin A \times {{\sin }^2}A}}{{{{\sin }^2}A \times \sin A \times \cos A \times {{\cos }^2}A}}
Add the powers of terms having same base
sin3(180+A)tan(360A)sec2(180A)cos2(90+A)cosec2Asin(180A)=sin3A×sin3Asin3Acos3A\Rightarrow \dfrac{{{{\sin }^3}({{180}^ \circ } + A)\tan ({{360}^ \circ } - A){{\sec }^2}({{180}^ \circ } - A)}}{{{{\cos }^2}({{90}^ \circ } + A)\cos e{c^2}A\sin ({{180}^ \circ } - A)}} = \dfrac{{{{\sin }^3}A \times {{\sin }^3}A}}{{{{\sin }^3}A{{\cos }^3}A}}
Cancel same terms from numerator and denominator
sin3(180+A)tan(360A)sec2(180A)cos2(90+A)cosec2Asin(180A)=sin3Acos3A\Rightarrow \dfrac{{{{\sin }^3}({{180}^ \circ } + A)\tan ({{360}^ \circ } - A){{\sec }^2}({{180}^ \circ } - A)}}{{{{\cos }^2}({{90}^ \circ } + A)\cos e{c^2}A\sin ({{180}^ \circ } - A)}} = \dfrac{{{{\sin }^3}A}}{{{{\cos }^3}A}}
Use law of exponents mxnx=(mn)x\dfrac{{{m^x}}}{{{n^x}}} = {\left( {\dfrac{m}{n}} \right)^x} to write the denominator
sin3(180+A)tan(360A)sec2(180A)cos2(90+A)cosec2Asin(180A)=(sinAcosA)3\Rightarrow \dfrac{{{{\sin }^3}({{180}^ \circ } + A)\tan ({{360}^ \circ } - A){{\sec }^2}({{180}^ \circ } - A)}}{{{{\cos }^2}({{90}^ \circ } + A)\cos e{c^2}A\sin ({{180}^ \circ } - A)}} = {\left( {\dfrac{{\sin A}}{{\cos A}}} \right)^3}
Put sinAcosA=tanA\dfrac{{\sin A}}{{\cos A}} = \tan A
sin3(180+A)tan(360A)sec2(180A)cos2(90+A)cosec2Asin(180A)=(tanA)3\Rightarrow \dfrac{{{{\sin }^3}({{180}^ \circ } + A)\tan ({{360}^ \circ } - A){{\sec }^2}({{180}^ \circ } - A)}}{{{{\cos }^2}({{90}^ \circ } + A)\cos e{c^2}A\sin ({{180}^ \circ } - A)}} = {(\tan A)^3}
sin3(180+A)tan(360A)sec2(180A)cos2(90+A)cosec2Asin(180A)=tan3A\Rightarrow \dfrac{{{{\sin }^3}({{180}^ \circ } + A)\tan ({{360}^ \circ } - A){{\sec }^2}({{180}^ \circ } - A)}}{{{{\cos }^2}({{90}^ \circ } + A)\cos e{c^2}A\sin ({{180}^ \circ } - A)}} = {\tan ^3}A
So, LHS is same as RHS
Hence proved.

Note: Students many times make the mistake of proving this question by applying formulas of sin(X+Y),tan(XY),sec(XY),cos(X+Y)\sin (X + Y),\tan (X - Y),\sec (X - Y),\cos (X + Y) as per the requirement in LHS. But this is a very complex and confusing long method as we have powers of square and cube which will be applied after using these trigonometric formulas. Equation of each term in numerator will be multiplied to other terms and so on, then taking common factors and cancelling terms will be a very long procedure, so we try to avoid it.
Students are likely to make mistakes while calculating the values from the quadrant diagram, keep in mind that we always move anti-clockwise as we add the angles, so when we subtract the angle we move backwards or clockwise to see which quadrant our function lies in.