Solveeit Logo

Question

Question: Show that \(\dfrac{\cos A}{1-\tan A}+\dfrac{\sin A}{1-\cot A}=\cos A+\sin A\)....

Show that cosA1tanA+sinA1cotA=cosA+sinA\dfrac{\cos A}{1-\tan A}+\dfrac{\sin A}{1-\cot A}=\cos A+\sin A.

Explanation

Solution

We have sum of two terms in the left-hand side of cosA1tanA+sinA1cotA=cosA+sinA\dfrac{\cos A}{1-\tan A}+\dfrac{\sin A}{1-\cot A}=\cos A+\sin A. We multiply cosA\cos A with cosA1tanA\dfrac{\cos A}{1-\tan A} and sinA\sin A with sinA1cotA\dfrac{\sin A}{1-\cot A} on both numerator and denominator. Then we add them as the denominators are the same. Then we use the identity of a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) to factor the numerator. We also need to mention the conditions.

Complete step by step answer:
We multiply cosA\cos A to the numerator and denominator of cosA1tanA\dfrac{\cos A}{1-\tan A}.
We know tanA=sinAcosA\tan A=\dfrac{\sin A}{\cos A}. This gives tanA.cosA=sinA\tan A.\cos A=\sin A.So,
cosA1tanA×cosAcosA=cos2AcosAsinA\dfrac{\cos A}{1-\tan A}\times \dfrac{\cos A}{\cos A}=\dfrac{{{\cos }^{2}}A}{\cos A-\sin A}
We multiply sinA\sin A to the numerator and denominator of sinA1cotA\dfrac{\sin A}{1-\cot A}.
We know cotA=cosAsinA\cot A=\dfrac{\cos A}{\sin A}. This gives cotA.sinA=cosA\cot A.\sin A=\cos A.
So, sinA1cotA×sinAsinA=sin2AsinAcosA\dfrac{\sin A}{1-\cot A}\times \dfrac{\sin A}{\sin A}=\dfrac{{{\sin }^{2}}A}{\sin A-\cos A}.

The equation becomes cosA1tanA+sinA1cotA=cos2AcosAsinA+sin2AsinAcosA\dfrac{\cos A}{1-\tan A}+\dfrac{\sin A}{1-\cot A}=\dfrac{{{\cos }^{2}}A}{\cos A-\sin A}+\dfrac{{{\sin }^{2}}A}{\sin A-\cos A}.
To make the denominators same we take a negative sign common.
cosA1tanA+sinA1cotA=cos2AcosAsinAsin2AcosAsinA\dfrac{\cos A}{1-\tan A}+\dfrac{\sin A}{1-\cot A}=\dfrac{{{\cos }^{2}}A}{\cos A-\sin A}-\dfrac{{{\sin }^{2}}A}{\cos A-\sin A}.
The addition gives cosA1tanA+sinA1cotA=cos2Asin2AcosAsinA\dfrac{\cos A}{1-\tan A}+\dfrac{\sin A}{1-\cot A}=\dfrac{{{\cos }^{2}}A-{{\sin }^{2}}A}{\cos A-\sin A}
The numerator is in the form of a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right). We now apply the identity theorem for the term cos2Asin2A{{\cos }^{2}}A-{{\sin }^{2}}A. We assume the values a=cosA,b=sinAa=\cos A,b=\sin A.

Applying the theorem, we get cos2Asin2A=(cosA+sinA)(cosAsinA){{\cos }^{2}}A-{{\sin }^{2}}A=\left( \cos A+\sin A \right)\left( \cos A-\sin A \right).
The equation becomes cosA1tanA+sinA1cotA=(cosA+sinA)(cosAsinA)(cosAsinA)\dfrac{\cos A}{1-\tan A}+\dfrac{\sin A}{1-\cot A}=\dfrac{\left( \cos A+\sin A \right)\left( \cos A-\sin A \right)}{\left( \cos A-\sin A \right)}.
We can now eliminate the (cosAsinA)\left( \cos A-\sin A \right) from both denominator and numerator.
The equation becomes cosA1tanA+sinA1cotA=cosA+sinA\dfrac{\cos A}{1-\tan A}+\dfrac{\sin A}{1-\cot A}=\cos A+\sin A.
Thus verified cosA1tanA+sinA1cotA=(cosA+sinA)\dfrac{\cos A}{1-\tan A}+\dfrac{\sin A}{1-\cot A}=\left( \cos A+\sin A \right).

Note: It is important to remember that the condition to eliminate the (cosAsinA)\left( \cos A-\sin A \right) from both denominator and numerator is (cosAsinA)0\left( \cos A-\sin A \right)\ne 0. No domain is given for the variable AA. The value of tanA0\tan A\ne 0 is essential. The simplified condition will be Anπ,nZA\ne n\pi ,n\in \mathbb{Z}. We also have the multiple angle theorem of cos2Asin2A=cos2A{{\cos }^{2}}A-{{\sin }^{2}}A=\cos 2A.