Question
Question: Show that \(\dfrac{\cos A}{1-\tan A}+\dfrac{\sin A}{1-\cot A}=\cos A+\sin A\)....
Show that 1−tanAcosA+1−cotAsinA=cosA+sinA.
Solution
We have sum of two terms in the left-hand side of 1−tanAcosA+1−cotAsinA=cosA+sinA. We multiply cosA with 1−tanAcosA and sinA with 1−cotAsinA on both numerator and denominator. Then we add them as the denominators are the same. Then we use the identity of a2−b2=(a+b)(a−b) to factor the numerator. We also need to mention the conditions.
Complete step by step answer:
We multiply cosA to the numerator and denominator of 1−tanAcosA.
We know tanA=cosAsinA. This gives tanA.cosA=sinA.So,
1−tanAcosA×cosAcosA=cosA−sinAcos2A
We multiply sinA to the numerator and denominator of 1−cotAsinA.
We know cotA=sinAcosA. This gives cotA.sinA=cosA.
So, 1−cotAsinA×sinAsinA=sinA−cosAsin2A.
The equation becomes 1−tanAcosA+1−cotAsinA=cosA−sinAcos2A+sinA−cosAsin2A.
To make the denominators same we take a negative sign common.
1−tanAcosA+1−cotAsinA=cosA−sinAcos2A−cosA−sinAsin2A.
The addition gives 1−tanAcosA+1−cotAsinA=cosA−sinAcos2A−sin2A
The numerator is in the form of a2−b2=(a+b)(a−b). We now apply the identity theorem for the term cos2A−sin2A. We assume the values a=cosA,b=sinA.
Applying the theorem, we get cos2A−sin2A=(cosA+sinA)(cosA−sinA).
The equation becomes 1−tanAcosA+1−cotAsinA=(cosA−sinA)(cosA+sinA)(cosA−sinA).
We can now eliminate the (cosA−sinA) from both denominator and numerator.
The equation becomes 1−tanAcosA+1−cotAsinA=cosA+sinA.
Thus verified 1−tanAcosA+1−cotAsinA=(cosA+sinA).
Note: It is important to remember that the condition to eliminate the (cosA−sinA) from both denominator and numerator is (cosA−sinA)=0. No domain is given for the variable A. The value of tanA=0 is essential. The simplified condition will be A=nπ,n∈Z. We also have the multiple angle theorem of cos2A−sin2A=cos2A.