Solveeit Logo

Question

Question: Show that \(\cot \left( {a + b} \right) = \dfrac{{\cot a\cot b - 1}}{{\cot a + \cot b}}\)....

Show that cot(a+b)=cotacotb1cota+cotb\cot \left( {a + b} \right) = \dfrac{{\cot a\cot b - 1}}{{\cot a + \cot b}}.

Explanation

Solution

To prove that cot(a+b)=cotacotb1cota+cotb\cot \left( {a + b} \right) = \dfrac{{\cot a\cot b - 1}}{{\cot a + \cot b}}, we will be taking LHS. Now, we can write cot(a+b)\cot \left( {a + b} \right) as cos(a+b)sin(a+b)\dfrac{{\cos \left( {a + b} \right)}}{{\sin \left( {a + b} \right)}}. Now, the formulas for cos(a+b)\cos \left( {a + b} \right) and sin(a+b)\sin \left( {a + b} \right) are
cos(a+b)=cosacosbsinasinb\Rightarrow \cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b
sin(a+b)=sinacosb+cosasinb\Rightarrow \sin \left( {a + b} \right) = \sin a\cos b + \cos a\sin b
Using these formulas and some calculations, we will get LHS=RHS.

Complete step-by-step answer:
In this question, we are given a trigonometric identity and we need to prove it.
Given identity: cot(a+b)=cotacotb1cota+cotb\cot \left( {a + b} \right) = \dfrac{{\cot a\cot b - 1}}{{\cot a + \cot b}} - - - - - - - - - - (1)
This is a general formula we will be using to solve many trigonometric questions. But in this question, we are going to see how this formula was derived.
Let us take the LHS of the equation (1) and try to bring it as the RHS.
So the LHS of the equation (1) is cot(a+b)\cot \left( {a + b} \right).
LHS=cot(a+b)\Rightarrow LHS = \cot \left( {a + b} \right)- - - - - - - - - - - - (2)
Now, we know that cot is cos divided by sin. Hence, we can write cot(a+b)\cot \left( {a + b} \right) as cos(a+b)\cos \left( {a + b} \right) divided by sin(a+b)\sin \left( {a + b} \right). Therefore, equation (2) becomes
LHS=cot(a+b)=cos(a+b)sin(a+b)\Rightarrow LHS = \cot \left( {a + b} \right) = \dfrac{{\cos \left( {a + b} \right)}}{{\sin \left( {a + b} \right)}}- - - - - - - (3)
Now, we know that the formula for cos(a+b)\cos \left( {a + b} \right) is
cos(a+b)=cosacosbsinasinb\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b
and the formula for sin(a+b)\sin \left( {a + b} \right) is
sin(a+b)=sinacosb+cosasinb\sin \left( {a + b} \right) = \sin a\cos b + \cos a\sin b
Hence, equation (3) becomes
LHS=cos(a+b)sin(a+b)=cosacosbsinasinbsinacosb+cosasinb\Rightarrow LHS = \dfrac{{\cos \left( {a + b} \right)}}{{\sin \left( {a + b} \right)}} = \dfrac{{\cos a\cos b - \sin a\sin b}}{{\sin a\cos b + \cos a\sin b}}- - - - - - (4)
Now, dividing equation (4) with sinasinb\sin a\sin b, we get
LHS=cosacosbsinasinbsinasinbsinasinbsinacosbsinasinb+cosasinbsinasinb\Rightarrow LHS = \dfrac{{\dfrac{{\cos a\cos b}}{{\sin a\sin b}} - \dfrac{{\sin a\sin b}}{{\sin a\sin b}}}}{{\dfrac{{\sin a\cos b}}{{\sin a\sin b}} + \dfrac{{\cos a\sin b}}{{\sin a\sin b}}}}
Now, cosθsinθ=cotθ\dfrac{{\cos \theta }}{{\sin \theta }} = \cot \theta and sinθcosθ=tanθ\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta
LHS=cotacotb1cotb+cota LHS=cotacotb1cota+cotb  \Rightarrow LHS = \dfrac{{\cot a\cot b - 1}}{{\cot b + \cot a}} \\\ \Rightarrow LHS = \dfrac{{\cot a\cot b - 1}}{{\cot a + \cot b}} \\\
Which is the RHS of the equation (1).
LHS=RHS\Rightarrow LHS = RHS
Hence, we have proved that cot(a+b)=cotacotb1cota+cotb\cot \left( {a + b} \right) = \dfrac{{\cot a\cot b - 1}}{{\cot a + \cot b}}.

Note: We can also prove tan(a+b)=tana+tanb1tanatanb\tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}} using the same method.
LHS=tan(a+b)=sin(a+b)cos(a+b)\Rightarrow LHS = \tan \left( {a + b} \right) = \dfrac{{\sin \left( {a + b} \right)}}{{\cos \left( {a + b} \right)}}
LHS=sinacosb+cosasinbcosacosbsinasinb\Rightarrow LHS = \dfrac{{\sin a\cos b + \cos a\sin b}}{{\cos a\cos b - \sin a\sin b}}
Divide the above equation with cosacosb\cos a\cos b, we get
LHS=sinacosbcosacosb+cosasinbcosacosbcosacosbcosacosbsinasinbcosacosb LHS=tana+tanb1tanatanb LHS=RHS  \Rightarrow LHS = \dfrac{{\dfrac{{\sin a\cos b}}{{\cos a\cos b}} + \dfrac{{\cos a\sin b}}{{\cos a\cos b}}}}{{\dfrac{{\cos a\cos b}}{{\cos a\cos b}} - \dfrac{{\sin a\sin b}}{{\cos a\cos b}}}} \\\ \Rightarrow LHS = \dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}} \\\ \Rightarrow LHS = RHS \\\