Solveeit Logo

Question

Question: Show that: \(\cot \left( {A + {{15}^0}} \right) - \tan \left( {A - {{15}^0}} \right) = \dfrac{{4\c...

Show that:
cot(A+150)tan(A150)=4cos2A1+2sin2A\cot \left( {A + {{15}^0}} \right) - \tan \left( {A - {{15}^0}} \right) = \dfrac{{4\cos 2A}}{{1 + 2\sin 2A}}

Explanation

Solution

Hint – In this question apply some basic properties of trigonometric identities such as 2cosCcosD=cos(C+D)+cos(CD),2\cos C\cos D = \cos \left( {C + D} \right) + \cos \left( {C - D} \right), cotθ=cosθsinθ, tanθ=sinθcosθ\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }},{\text{ }}\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} to reach the solution of the question.

Given equation is
cot(A+150)tan(A150)=4cos2A1+sin2A\cot \left( {A + {{15}^0}} \right) - \tan \left( {A - {{15}^0}} \right) = \dfrac{{4\cos 2A}}{{1 + \sin 2A}}
Consider L.H.S
=cot(A+150)tan(A150)= \cot \left( {A + {{15}^0}} \right) - \tan \left( {A - {{15}^0}} \right)
As we know cotθ=cosθsinθ, tanθ=sinθcosθ\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }},{\text{ }}\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} , so apply these properties in the above equation we have,
=cos(A+150)sin(A+150)sin(A150)cos(A150)=cos(A+150)cos(A150)sin(A+150)sin(A150)cos(A150)sin(A+150)= \dfrac{{\cos \left( {A + {{15}^0}} \right)}}{{\sin \left( {A + {{15}^0}} \right)}} - \dfrac{{\sin \left( {A - {{15}^0}} \right)}}{{\cos \left( {A - {{15}^0}} \right)}} = \dfrac{{\cos \left( {A + {{15}^0}} \right)\cos \left( {A - {{15}^0}} \right) - \sin \left( {A + {{15}^0}} \right)\sin \left( {A - {{15}^0}} \right)}}{{\cos \left( {A - {{15}^0}} \right)\sin \left( {A + {{15}^0}} \right)}}
Now multiply and divide by 2 in above equation we have
=2cos(A+150)cos(A150)2sin(A+150)sin(A150)2cos(A150)sin(A+150)= \dfrac{{2\cos \left( {A + {{15}^0}} \right)\cos \left( {A - {{15}^0}} \right) - 2\sin \left( {A + {{15}^0}} \right)\sin \left( {A - {{15}^0}} \right)}}{{2\cos \left( {A - {{15}^0}} \right)\sin \left( {A + {{15}^0}} \right)}}
Now we all know that
2cosCcosD=cos(C+D)+cos(CD), 2sinCsinD=cos(CD)cos(C+D) and 2cosCsinD=sin(C+D)sin(CD)  2\cos C\cos D = \cos \left( {C + D} \right) + \cos \left( {C - D} \right), \\\ 2\sin C\sin D = \cos \left( {C - D} \right) - \cos \left( {C + D} \right){\text{ and}} \\\ 2\cos C\sin D = \sin \left( {C + D} \right) - \sin \left( {C - D} \right) \\\
So, apply these properties in above equation we have,
=cos(2A)+cos(300)(cos(300)cos(2A0))sin(2A)sin(300)= \dfrac{{\cos \left( {2A} \right) + \cos \left( {{{30}^0}} \right) - \left( {\cos \left( {{{30}^0}} \right) - \cos \left( {2{A^0}} \right)} \right)}}{{\sin \left( {2A} \right) - \sin \left( { - {{30}^0}} \right)}}
Now as we know that sin(θ)=sinθ\sin \left( { - \theta } \right) = - \sin \theta , so apply this property in the above equation we have,
=2cos2Asin(2A)+sin(300)= \dfrac{{2\cos 2A}}{{\sin \left( {2A} \right) + \sin \left( {{{30}^0}} \right)}}
Now we all know that sin300=12\sin {30^0} = \dfrac{1}{2}
=cot(A+150)tan(A150)==2cos2Asin(2A)+12=4cos2A2sin2A+1= \cot \left( {A + {{15}^0}} \right) - \tan \left( {A - {{15}^0}} \right) = = \dfrac{{2\cos 2A}}{{\sin \left( {2A} \right) + \dfrac{1}{2}}} = \dfrac{{4\cos 2A}}{{2\sin 2A + 1}}
= R.H.S
Hence Proved

Note – In such types of questions the key concept we have to remember is that always recall all the properties of trigonometric identities which is all stated above then using these properties simplify the L.H.S part of the given equation we will get the required R.H.S part of the equation.