Solveeit Logo

Question

Question: Show that \(\cos hx + \sin hx = {e^x}\) and simplify \(\cos hx - \sin hx = ?\) . By considering \({(...

Show that coshx+sinhx=ex\cos hx + \sin hx = {e^x} and simplify coshxsinhx=?\cos hx - \sin hx = ? . By considering (coshx+sinhx)2+(coshxsinhx)2{(\cos hx + \sin hx)^2} + {(\cos hx - \sin hx)^2} show that cos2hxsin2hx=cosh2x.{\cos ^2}hx - {\sin ^2}hx = \cos h2x.

Explanation

Solution

Hint:-In this problem firstly you have to define coshx\cos hx and sinhx\sin hx in terms of exponential function ex{e^x}. Then you have to apply various operations addition, subtraction, squaring of obtained expressions to get the required result or to simplify the given expression.

Complete step by step answer:
Now we know that
The hyperbolic functions have similar names to the trigonometric functions, but they are defined in terms of the exponential function. The hyperbolic functions coshx\cos hx and sinhx\sin hx are defined using the exponential function ex{e^x}as:
coshx=ex+ex2 eq.1 and sinhx=exex2 eq.2 adding eq.1 and eq.2 we get coshx+sinhx=ex+ex2 + exex2 coshx+sinhx=ex eq.3 subtracting eq.2 from eq.1, we get coshx+sinhx=ex+ex2  exex2 coshxsinhx=ex eq.4 On squaring the eq.3 and eq.4,we get  (coshx+sinhx)2=e2x eq.5  (coshxsinhx)2=e2x eq.6  add eq.5 and eq.6, we get  (coshx+sinhx)2+(coshxsinhx)2=e2x+e2x  On further solving the above equation, we get 2(cos2hx+sin2hx)=e2x+e2x   cos2hx + sin2hx = 1 (cos2hx+sin2hx)=e2x+e2x2  cosh2x = e2x+e2x2 (cos2hx+sin2hx)=cosh2x eq.7  \cos hx = \dfrac{{{e^x} + {e^{ - x}}}}{2}{\text{ eq}}{\text{.1}} \\\ {\text{and sin}}hx = \dfrac{{{e^x} - {e^{ - x}}}}{2}{\text{ eq}}{\text{.2}} \\\ {\text{adding eq}}{\text{.1 and eq}}{\text{.2 we get}} \\\ \cos hx + \sin hx = \dfrac{{{e^x} + {e^{ - x}}}}{2}{\text{ }} + {\text{ }}\dfrac{{{e^x} - {e^{ - x}}}}{2} \\\ \Rightarrow \cos hx + \sin hx = {e^x}{\text{ eq}}{\text{.3}} \\\ {\text{subtracting eq}}{\text{.2 from eq}}{\text{.1, we get}} \\\ \cos hx + \sin hx = \dfrac{{{e^x} + {e^{ - x}}}}{2}{\text{ }} - {\text{ }}\dfrac{{{e^x} - {e^{ - x}}}}{2} \\\ \Rightarrow \cos hx - \sin hx = {e^{ - x}}{\text{ eq}}{\text{.4}} \\\ {\text{On squaring the eq}}{\text{.3 and eq}}{\text{.4,we get}} \\\ \Rightarrow {\text{ (}}\cos hx + \sin hx{)^2} = {e^{2x}}{\text{ eq}}{\text{.5}} \\\ \Rightarrow {\text{ }}{(\cos hx - \sin hx)^2} = {e^{ - 2x}}{\text{ eq}}{\text{.6 }} \\\ {\text{add eq}}{\text{.5 and eq}}{\text{.6, we get}} \\\ \Rightarrow {\text{ (}}\cos hx + \sin hx{)^2} + {(\cos hx - \sin hx)^2} = {e^{2x}} + {e^{ - 2x}}{\text{ }} \\\ {\text{On further solving the above equation, we get}} \\\ \Rightarrow 2({\cos ^2}hx + {\sin ^2}hx) = {e^{2x}} + {e^{ - 2x}}{\text{ \\{ }}\therefore {\text{ co}}{{\text{s}}^2}{\text{hx + si}}{{\text{n}}^2}{\text{hx = 1\\} }} \\\ \Rightarrow ({\cos ^2}hx + {\sin ^2}hx) = \dfrac{{{e^{2x}} + {e^{ - 2x}}}}{2} \\\ \therefore {\text{ }}\cos h2x{\text{ = }}\dfrac{{{e^{2x}} + {e^{ - 2x}}}}{2} \\\ \Rightarrow ({\cos ^2}hx + {\sin ^2}hx) = \cos h2x{\text{ eq}}{\text{.7}} \\\
Hence proved,
coshx+sinhx=ex\cos hx + \sin hx = {e^x} {\therefore from eq.3}
cos2hxsin2hx=cosh2x.{\cos ^2}hx - {\sin ^2}hx = \cos h2x. {\therefore from eq.7}
And simplification of coshxsinhx=ex\cos hx - \sin hx = {e^{ - x}} {\therefore from eq.4}

Note:- Whenever you get this type of problem the key concept of solving is that you have knowledge about hyperbolic function. There are two base equation from which all other results will be derived are coshx=ex+ex2 and sinhx=exex2 \cos hx = \dfrac{{{e^x} + {e^{ - x}}}}{2}{\text{ and sin}}hx = \dfrac{{{e^x} - {e^{ - x}}}}{2}{\text{ }}.Then by simple operation like squaring , addition , subtraction you can obtained the desired result. And one more thing to be remembered that hyperbolic functions are different from trigonometric functions.