Solveeit Logo

Question

Question: Show that: \(\cos 6x=32{{\cos }^{6}}x-48{{\cos }^{4}}x+18{{\cos }^{2}}x-1\)...

Show that:
cos6x=32cos6x48cos4x+18cos2x1\cos 6x=32{{\cos }^{6}}x-48{{\cos }^{4}}x+18{{\cos }^{2}}x-1

Explanation

Solution

Hint : To prove the given expression, we can write cos6x\cos 6xascos2(3x)\cos 2\left( 3x \right). Now, apply the identity ofcos2θ\cos 2\theta on cos2(3x)\cos 2\left( 3x \right) which will be equal to 2cos23x12{{\cos }^{2}}3x-1. Then apply the identity of cos3x\cos 3x which is equal to 4cos3x3cosx4{{\cos }^{3}}x-3\cos x. And simplify.

Complete step by step solution :
The given equation that we have to prove is:
cos6x=32cos6x48cos4x+18cos2x1\cos 6x=32{{\cos }^{6}}x-48{{\cos }^{4}}x+18{{\cos }^{2}}x-1
We are going to expand cos6x\cos 6x in the above equation as follows.
We can write cos6x\cos 6x as cos2(3x)\cos 2\left( 3x \right) and then we will apply the identity of cos2θ\cos 2\theta on cos2(3x)\cos 2\left( 3x \right).
cos2(3x)=2cos23x1\cos 2\left( 3x \right)=2{{\cos }^{2}}3x-1
From the trigonometric double angle identities we know that, cos3x=4cos3x3cosx\cos 3x=4{{\cos }^{3}}x-3\cos x. Substituting this value ofcos3x\cos 3xin the above equation we get,
2(4cos3x3cosx)21 =2(16cos6x+9cos2x24cos4x)1 =32cos6x+18cos4x48cos4x1 \begin{aligned} & 2{{\left( 4{{\cos }^{3}}x-3\cos x \right)}^{2}}-1 \\\ & =2\left( 16{{\cos }^{6}}x+9{{\cos }^{2}}x-24{{\cos }^{4}}x \right)-1 \\\ & =32{{\cos }^{6}}x+18{{\cos }^{4}}x-48{{\cos }^{4}}x-1 \\\ \end{aligned}
From the above simplification, we get the L.H.S=32cos6x+18cos4x48cos4x1L.H.S=32{{\cos }^{6}}x+18{{\cos }^{4}}x-48{{\cos }^{4}}x-1
And R.H.S of the given expression is equal to 32cos6x48cos4x+18cos2x132{{\cos }^{6}}x-48{{\cos }^{4}}x+18{{\cos }^{2}}x-1
As L.H.S = R.H.S Hence, we have proved the given expression.

Note : The other way of showing the equality of the given expression:
cos6x=32cos6x48cos4x+18cos2x1\cos 6x=32{{\cos }^{6}}x-48{{\cos }^{4}}x+18{{\cos }^{2}}x-1
We can also write cos6x\cos 6x as cos3(2x)\cos 3(2x) and then apply the identity of cos3θ\cos 3\theta on cos3(2x)\cos 3(2x) whereθ=2x\theta =2x.
cos6x=4cos32x3cos2x\cos 6x=4{{\cos }^{3}}2x-3\cos 2x
Now, substituting cos2x=2cos2x1\cos 2x=2{{\cos }^{2}}x-1 in the above equation we get,
cos6x=4(2cos2x1)33(2cos2x1)\cos 6x=4{{\left( 2{{\cos }^{2}}x-1 \right)}^{3}}-3\left( 2{{\cos }^{2}}x-1 \right)
Applying (ab)3{{\left( a-b \right)}^{3}} identity in the above equation we get,
cos6x=4(8cos6x13.4cos4x+3.2cos2x)6cos2x+3 cos6x=32cos6x448cos4x+24cos2x6cos2x+3 cos6x=32cos6x48cos4x+18cos2x1 \begin{aligned} & \cos 6x=4\left( 8{{\cos }^{6}}x-1-3.4{{\cos }^{4}}x+3.2{{\cos }^{2}}x \right)-6{{\cos }^{2}}x+3 \\\ & \Rightarrow \cos 6x=32{{\cos }^{6}}x-4-48{{\cos }^{4}}x+24{{\cos }^{2}}x-6{{\cos }^{2}}x+3 \\\ & \Rightarrow \cos 6x=32{{\cos }^{6}}x-48{{\cos }^{4}}x+18{{\cos }^{2}}x-1 \\\ \end{aligned}
Now, the simplification of cos6x\cos 6x yields the same result as given in the R.H.S of the given expression.
Hence, we have proved L.H.S = R.H.S by making a little change in writing the trigonometric functioncos6x\cos 6x.
You must know the double and triple angle identities of cosine and sine as it has many applications in proving the trigonometric expressions just as we have shown above.